Utility Functions

build_cox_model(df, duration_col, event_col, crossval=False, n_splits=5, random_state=42)

Fits a Cox Proportional Hazards model to the data with optional cross-validation.

Parameters: - df: Pandas DataFrame containing features, survival times, and event indicators. - duration_col: Column name for survival times. - event_col: Column name for event indicator (1 = event occurred, 0 = censored). - crossval: If True, performs K-fold cross-validation and returns average C-index. - n_splits: Number of folds for cross-validation. - random_state: Random seed for reproducibility.

Returns: - cox_model: Fitted CoxPH model on the full data. - mean_c_index (optional): Mean C-index from cross-validation if crossval=True.

Source code in flexynesis/utils.py
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
def build_cox_model(df, duration_col, event_col, crossval=False, n_splits=5, random_state=42):
    """
    Fits a Cox Proportional Hazards model to the data with optional cross-validation.

    Parameters:
    - df: Pandas DataFrame containing features, survival times, and event indicators.
    - duration_col: Column name for survival times.
    - event_col: Column name for event indicator (1 = event occurred, 0 = censored).
    - crossval: If True, performs K-fold cross-validation and returns average C-index.
    - n_splits: Number of folds for cross-validation.
    - random_state: Random seed for reproducibility.

    Returns:
    - cox_model: Fitted CoxPH model on the full data.
    - mean_c_index (optional): Mean C-index from cross-validation if crossval=True.
    """

    def remove_low_variance_survival_features(df, duration_col, event_col, threshold=0.01):
        events = df[event_col].astype(bool)
        low_variance_features = []

        for feature in df.drop(columns=[duration_col, event_col]).columns:
            variance_when_event = df.loc[events, feature].var()
            variance_when_no_event = df.loc[~events, feature].var()
            if variance_when_event < threshold or variance_when_no_event < threshold:
                low_variance_features.append(feature)

        df_filtered = df.drop(columns=low_variance_features)
        if low_variance_features:
            print("Removed low variance features:", low_variance_features)
        return df_filtered

    df = remove_low_variance_survival_features(df, duration_col, event_col)

    if crossval:
        kf = KFold(n_splits=n_splits, shuffle=True, random_state=random_state)
        c_indices = []

        for train_idx, test_idx in kf.split(df):
            train_df = df.iloc[train_idx]
            test_df = df.iloc[test_idx]

            model = CoxPHFitter()
            model.fit(train_df, duration_col=duration_col, event_col=event_col)

            # Compute risk scores on test set and C-index
            risk_scores = model.predict_partial_hazard(test_df)
            ci = concordance_index(test_df[duration_col], -risk_scores, test_df[event_col])
            c_indices.append(ci)

        mean_c_index = np.mean(c_indices)
        print(f"Cross-validated C-index (mean over {n_splits} folds): {mean_c_index:.3f}")
    else:
        mean_c_index = None

    # Fit on full data
    final_model = CoxPHFitter()
    final_model.fit(df, duration_col=duration_col, event_col=event_col)

    return final_model

compute_transport_cost(embeddings, batch_labels, blur=0.5)

Compute a transport cost using Sinkhorn loss to align embeddings between batches.

Parameters: - embeddings (torch.Tensor): Tensor of embeddings (shape: [num_samples, num_features]). - batch_labels (torch.Tensor): Tensor of batch labels (shape: [num_samples]). - blur (float): Regularization parameter for Sinkhorn OT.

Returns: - loss (torch.Tensor): Sinkhorn loss value.

Source code in flexynesis/utils.py
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
def compute_transport_cost(embeddings, batch_labels, blur=0.5):
    """
    Compute a transport cost using Sinkhorn loss to align embeddings between batches.

    Parameters:
    - embeddings (torch.Tensor): Tensor of embeddings (shape: [num_samples, num_features]).
    - batch_labels (torch.Tensor): Tensor of batch labels (shape: [num_samples]).
    - blur (float): Regularization parameter for Sinkhorn OT.

    Returns:
    - loss (torch.Tensor): Sinkhorn loss value.
    """
    # Ensure batch labels are integers
    batch_labels = batch_labels.long()

    # Split embeddings by batch
    batch1_embeddings = embeddings[batch_labels == 0]
    batch2_embeddings = embeddings[batch_labels == 1]

    if batch1_embeddings.size(0) == 0 or batch2_embeddings.size(0) == 0:
        raise ValueError("Both batches must have at least one sample for transport cost computation.")

    # Initialize the Sinkhorn loss function
    loss_fn = SamplesLoss("sinkhorn", blur=blur)

    # Compute the Sinkhorn loss between the two batches
    loss = loss_fn(batch1_embeddings, batch2_embeddings)

    return loss

create_covariate_matrix(covariates, variable_types, ann)

Convert clinical variables used as covariates into a covariate matrix as a Pandas DataFrame. Missing values in numerical variables are imputed using the median.

Parameters:
  • covariates (list of str) –

    List of variable names that must exist in the "clin.csv".

  • variable_types (dict) –

    Dictionary mapping variable names to their types ('categorical' or 'numerical').

  • ann (DataFrame) –

    Annotation DataFrame containing batch variable values.

Returns:
  • pd.DataFrame: A covariate matrix DataFrame where categorical variables are one-hot-encoded as 0/1 and numerical variables are imputed, with features as rows and samples as columns.

Source code in flexynesis/utils.py
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
def create_covariate_matrix(covariates, variable_types, ann):
    """
    Convert clinical variables used as covariates into a covariate matrix as a Pandas DataFrame.
    Missing values in numerical variables are imputed using the median.

    Args:
        covariates (list of str): List of variable names that must exist in the "clin.csv".
        variable_types (dict): Dictionary mapping variable names to their types ('categorical' or 'numerical').
        ann (pd.DataFrame): Annotation DataFrame containing batch variable values.

    Returns:
        pd.DataFrame: A covariate matrix DataFrame where categorical variables are one-hot-encoded as 0/1 and numerical variables are imputed,
                      with features as rows and samples as columns.
    """
    covariate_features = []
    feature_names = []

    for var in covariates:
        if variable_types.get(var) == 'categorical':
            # One-hot-encode categorical variables with 0/1 encoding
            one_hot = pd.get_dummies(ann[var], prefix=var).astype(int)
            covariate_features.append(one_hot.T)  # Transpose to make features rows
            feature_names.extend(one_hot.columns.tolist())
        elif variable_types.get(var) == 'numerical':
            # Handle numerical variables with missing values
            numerical_data = ann[[var]].copy()
            # Impute missing values using the median and assign back
            numerical_data[var] = numerical_data[var].fillna(numerical_data[var].median())
            covariate_features.append(numerical_data.T)  # Transpose to make features rows
            feature_names.append(var)
        else:
            raise ValueError(f"Unknown variable type for {var}: {variable_types.get(var)}")

    # Concatenate all covariate features into a single DataFrame
    covariate_matrix = pd.concat(covariate_features, axis=0)

    # Ensure row order matches appended feature names and preserve sample names as columns
    covariate_matrix.index = feature_names
    covariate_matrix.columns = ann.index

    return covariate_matrix

evaluate_baseline_performance(train_dataset, test_dataset, variable_name, methods, n_folds=5, n_jobs=4, use_pca=False, n_components=100)

Evaluates the performance of machine learning models on a given variable with optional PCA for dimensionality reduction.

Parameters:
  • train_dataset (Dataset) –

    A MultiOmicDataset object containing training data and metadata.

  • test_dataset (Dataset) –

    A MultiOmicDataset object containing testing data.

  • variable_name (str) –

    The name of the target variable for prediction.

  • methods (list of str) –

    List of machine learning methods to evaluate, e.g., ['RandomForest', 'SVM', 'XGBoost'].

  • n_folds (int, default: 5 ) –

    Number of folds for K-fold cross-validation. Defaults to 5.

  • n_jobs (int, default: 4 ) –

    Number of jobs to run in parallel. Defaults to 4.

  • use_pca (bool, default: False ) –

    Whether to apply PCA for dimensionality reduction. Defaults to False.

  • n_components (int, default: 100 ) –

    Number of principal components to keep if PCA is applied. Defaults to 50.

Returns:
  • pd.DataFrame: A DataFrame containing metrics for each method.

Source code in flexynesis/utils.py
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
def evaluate_baseline_performance(train_dataset, test_dataset, variable_name, methods, n_folds=5, n_jobs=4, use_pca=False, n_components=100):
    """
    Evaluates the performance of machine learning models on a given variable with optional PCA for dimensionality reduction.

    Args:
        train_dataset (Dataset): A MultiOmicDataset object containing training data and metadata.
        test_dataset (Dataset): A MultiOmicDataset object containing testing data.
        variable_name (str): The name of the target variable for prediction.
        methods (list of str): List of machine learning methods to evaluate, e.g., ['RandomForest', 'SVM', 'XGBoost'].
        n_folds (int, optional): Number of folds for K-fold cross-validation. Defaults to 5.
        n_jobs (int, optional): Number of jobs to run in parallel. Defaults to 4.
        use_pca (bool, optional): Whether to apply PCA for dimensionality reduction. Defaults to False.
        n_components (int, optional): Number of principal components to keep if PCA is applied. Defaults to 50.

    Returns:
        pd.DataFrame: A DataFrame containing metrics for each method.
    """
    def prepare_data(data_object, pca_model=None, fit_pca=False):
        # Concatenate Data Matrices
        X = np.concatenate([tensor for tensor in data_object.dat.values()], axis=1)
        y = np.array(data_object.ann[variable_name])

        # Filter out samples without a valid label
        valid_indices = ~np.isnan(y)
        X = X[valid_indices]
        y = y[valid_indices]

        if use_pca:
            if fit_pca:
                pca_model.fit(X)
                print(f"PCA fitted: Reduced to {n_components} components")
            X = pca_model.transform(X)
            print(f"PCA applied: Transformed to {n_components} components")

        return X, y, np.where(valid_indices)[0]

    # Initialize PCA model if PCA is used
    pca_model = PCA(n_components=n_components) if use_pca else None

    # Determine variable type
    variable_type = train_dataset.variable_types[variable_name]

    # Cross-Validation and Training
    kf = KFold(n_splits=n_folds, shuffle=True, random_state=42)
    X_train, y_train, train_indices = prepare_data(train_dataset, pca_model=pca_model, fit_pca=True)
    print("Train:", X_train.shape)
    X_test, y_test, test_indices = prepare_data(test_dataset, pca_model=pca_model, fit_pca=False)
    print("Test:", X_test.shape)

    metrics_list = []
    predictions = []  # Collect all predictions

    for method in methods:
        if variable_type == 'categorical':
            if method == 'RandomForest':
                model = RandomForestClassifier(random_state=42)
                params = {'n_estimators': [100, 200, 300], 'max_depth': [10, 20, None]}
            elif method == 'SVM':
                model = SVC(probability=True, random_state=42)
                params = {'C': [0.1, 1, 10], 'kernel': ['rbf', 'poly']}
            elif method == 'XGBoost':
                model = XGBClassifier(eval_metric='logloss', random_state=42)
                params = {'n_estimators': [100, 200, 300], 'max_depth': [3, 6, 9], 'learning_rate': [0.01, 0.1, 0.2]}
        elif variable_type == 'numerical':
            if method == 'RandomForest':
                model = RandomForestRegressor(random_state=42)
                params = {'n_estimators': [100, 200, 300], 'max_depth': [10, 20, None]}
            elif method == 'SVM':
                model = SVR()
                params = {'C': [0.1, 1, 10], 'kernel': ['rbf', 'poly']}
            elif method == 'XGBoost':
                model = XGBRegressor(random_state=42)
                params = {'n_estimators': [100, 200, 300], 'max_depth': [3, 6, 9], 'learning_rate': [0.01, 0.1, 0.2]}

        print("Training method:", method)
        grid_search = GridSearchCV(model, params, cv=kf, n_jobs=n_jobs)
        grid_search.fit(X_train, y_train)
        best_model = grid_search.best_estimator_

        # Predict on test data
        if variable_type == 'categorical':
            y_probs = best_model.predict_proba(X_test)
            metrics = evaluate_classifier(y_test, y_probs, print_report=True)
            y_pred_dict = {variable_name: y_probs}
        elif variable_type == 'numerical':
            y_pred = best_model.predict(X_test)
            metrics = evaluate_regressor(y_test, y_pred)
            y_pred_dict = {variable_name: y_pred}

        # need to get test indices to only consider samples with labels
        df_preds = get_predicted_labels(y_pred_dict, test_dataset.subset(test_indices), 'test', method)
        predictions.append(df_preds)

        for metric, value in metrics.items():
            metrics_list.append({
                'method': method + ('Classifier' if variable_type == 'categorical' else 'Regressor'),
                'var': variable_name,
                'variable_type': variable_type,
                'metric': metric,
                'value': value
            })

    predictions = pd.concat(predictions, ignore_index=True)

    return pd.DataFrame(metrics_list), predictions

evaluate_baseline_survival_performance(train_dataset, test_dataset, duration_col, event_col, n_folds=5, n_jobs=4)

Evaluates the baseline performance of a Random Survival Forest model on survival data using the Concordance Index.

The function preprocesses both training and testing datasets to prepare appropriate survival data (comprising durations and event occurrences), performs cross-validation to assess model robustness, and then calculates the Concordance Index on the test data. It uses a Random Survival Forest (RSF) as the predictive model.

Parameters:
  • train_dataset (Dataset) –

    The training dataset (a MultiOmicDataset object) containing features and survival data.

  • test_dataset (Dataset) –

    The testing dataset (a MultiOmicDataset object) containing features and survival data.

  • duration_col (str) –

    Column name in the dataset for survival time.

  • event_col (str) –

    Column name in the dataset for the event occurrence (1 if event occurred, 0 otherwise).

  • n_folds (int, default: 5 ) –

    Number of folds for K-fold cross-validation. Defaults to 5.

  • n_jobs (int, default: 4 ) –

    Number of parallel jobs to run for Random Survival Forest training. Defaults to 4.

Returns:
  • pd.DataFrame: A DataFrame containing the performance metrics of the RSF model, specifically the Concordance Index, listed along with the method name and variable details.

Source code in flexynesis/utils.py
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
def evaluate_baseline_survival_performance(train_dataset, test_dataset, duration_col, event_col, n_folds=5, n_jobs=4):
    """
    Evaluates the baseline performance of a Random Survival Forest model on survival data using the Concordance Index.

    The function preprocesses both training and testing datasets to prepare appropriate survival data (comprising durations 
    and event occurrences), performs cross-validation to assess model robustness, and then calculates the Concordance Index on 
    the test data. It uses a Random Survival Forest (RSF) as the predictive model.

    Args:
        train_dataset (Dataset): The training dataset (a MultiOmicDataset object) containing features and survival data.
        test_dataset (Dataset): The testing dataset  (a MultiOmicDataset object) containing features and survival data.
        duration_col (str): Column name in the dataset for survival time.
        event_col (str): Column name in the dataset for the event occurrence (1 if event occurred, 0 otherwise).
        n_folds (int, optional): Number of folds for K-fold cross-validation. Defaults to 5.
        n_jobs (int, optional): Number of parallel jobs to run for Random Survival Forest training. Defaults to 4.

    Returns:
        pd.DataFrame: A DataFrame containing the performance metrics of the RSF model, specifically the Concordance Index,
                      listed along with the method name and variable details.

    """
    print(f"[INFO] Evaluating baseline survival prediction performance")
    def prepare_data(data_object, duration_col, event_col):
        # Concatenate Data Matrices
        X = np.concatenate([tensor for tensor in data_object.dat.values()], axis=1)

        # Prepare Survival Data (Durations and Events)
        durations = np.array(data_object.ann[duration_col])
        events = np.array(data_object.ann[event_col])
        y = np.array([(event, duration) for event, duration in zip(events, durations)], 
                     dtype=[('Event', '?'), ('Time', '<f8')])

        # Filter out samples without a valid survival data
        valid_indices = ~np.isnan(durations) & ~np.isnan(events)
        X = X[valid_indices]
        y = y[valid_indices]
        return X, y, np.where(valid_indices)[0]

    # Prepare train and test data
    X_train, y_train, train_indices = prepare_data(train_dataset, duration_col, event_col)
    X_test, y_test, test_indices = prepare_data(test_dataset, duration_col, event_col)

    # Initialize Random Survival Forest
    rsf = RandomSurvivalForest(n_estimators=100, max_depth=5, min_samples_split=10,
                               min_samples_leaf=15, max_features="sqrt", n_jobs=n_jobs, random_state=42)

    # Cross-Validation to determine the best model
    kf = KFold(n_splits=n_folds, shuffle=True, random_state=42)
    c_index_scores = []

    for train_index, test_index in kf.split(X_train):
        X_fold_train, X_fold_test = X_train[train_index], X_train[test_index]
        y_fold_train, y_fold_test = y_train[train_index], y_train[test_index]

        rsf.fit(X_fold_train, y_fold_train)
        prediction = rsf.predict(X_fold_test)
        c_index = concordance_index_censored(y_fold_test['Event'], y_fold_test['Time'], prediction)
        c_index_scores.append(c_index[0])

    # Calculate average C-index across all folds
    avg_c_index = np.mean(c_index_scores)
    print(f"[INFO] Average C-index in cross-validation: {avg_c_index}")

    # Retrain on full training data and evaluate on test data
    rsf.fit(X_train, y_train)
    test_prediction = rsf.predict(X_test)
    test_c_index = concordance_index_censored(y_test['Event'], y_test['Time'], test_prediction)
    print(f"[INFO] C-index on test data: {test_c_index[0]}")


    # need to get test indices to only consider samples with labels
    predicted_labels = get_predicted_labels({event_col: test_prediction}, test_dataset.subset(test_indices), 'test', 'RandomSurvivalForest')
    # Reporting
    metrics_list = [{
        'method': 'RandomSurvivalForest',
        'var': event_col, 
        'variable_type': 'numerical',
        'metric': 'cindex',
        'value': test_c_index[0]
    }]

    return pd.DataFrame(metrics_list), predicted_labels

evaluate_classifier(y_true, y_probs, print_report=False)

Evaluate the performance of a classifier using multiple metrics and optionally print a detailed classification report.

This function computes balanced accuracy, F1 score (weighted), Cohen's Kappa score, average AUROC score, and weighted-average AUC-PR score for the given true labels and predicted probabilities. If print_report is set to True, it prints a detailed classification report.

Parameters:
  • y_true (array - like) –

    True labels of the data, must be a 1D list or array of labels.

  • y_probs (array - like) –

    Predicted probabilities for each class, must be 2D (n_samples, n_classes).

  • print_report (bool, default: False ) –

    If True, prints a detailed classification report. Defaults to False.

Returns:
  • dict

    A dictionary containing: - 'balanced_acc': The balanced accuracy of the predictions. - 'f1_score': The weighted-average F1 score of the predictions. - 'kappa': Cohen's Kappa score indicating the level of agreement between the true and predicted labels. - 'average_auroc': The weighted average AUROC score across all classes. - 'average_aupr': The weighted average AUC-PR score across all classes.

Source code in flexynesis/utils.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def evaluate_classifier(y_true, y_probs, print_report=False):
    """
    Evaluate the performance of a classifier using multiple metrics and optionally print a detailed classification report.

    This function computes balanced accuracy, F1 score (weighted), Cohen's Kappa score, average AUROC score, and 
    weighted-average AUC-PR score for the given true labels and predicted probabilities.
    If `print_report` is set to True, it prints a detailed classification report.

    Args:
        y_true (array-like): True labels of the data, must be a 1D list or array of labels.
        y_probs (array-like): Predicted probabilities for each class, must be 2D (n_samples, n_classes).
        print_report (bool, optional): If True, prints a detailed classification report. Defaults to False.

    Returns:
        dict: A dictionary containing:
              - 'balanced_acc': The balanced accuracy of the predictions.
              - 'f1_score': The weighted-average F1 score of the predictions.
              - 'kappa': Cohen's Kappa score indicating the level of agreement between the true and predicted labels.
              - 'average_auroc': The weighted average AUROC score across all classes.
              - 'average_aupr': The weighted average AUC-PR score across all classes.
    """
    # Convert probabilities to predicted labels
    y_pred = np.argmax(y_probs, axis=1)

    # Balanced accuracy
    balanced_acc = balanced_accuracy_score(y_true, y_pred)

    # F1 score (weighted)
    f1 = f1_score(y_true, y_pred, average='weighted', zero_division=0)

    # Cohen's Kappa
    kappa = cohen_kappa_score(y_true, y_pred)

    # Compute AUROC/AUPR 
    try:
        if y_probs.shape[1] == 2:  # Binary classification
            y_probs_binary = y_probs[:, 1]  # Use positive class probabilities
            average_auroc = roc_auc_score(y_true, y_probs_binary)
            average_aupr = average_precision_score(y_true, y_probs_binary)  # AUC-PR for binary case
        else:  # Multiclass classification
            average_auroc = roc_auc_score(y_true, y_probs, multi_class='ovr', average='weighted')
            average_aupr = average_precision_score(y_true, y_probs, average='weighted')  # Weighted AUC-PR for multiclass
    except ValueError:
        average_auroc = None  # Handle cases where AUROC cannot be computed
        average_aupr = None  # Handle cases where AUC-PR cannot be computed

    # Full classification report
    if print_report:
        print("\nClassification Report:")
        report = classification_report(y_true, y_pred, zero_division=0)
        print(report)

    return {
        "balanced_acc": balanced_acc,
        "f1_score": f1,
        "kappa": kappa,
        "average_auroc": average_auroc,
        "average_aupr": average_aupr  # Added AUC-PR
    }

evaluate_regressor(y_true, y_pred)

Evaluate the performance of a regression model using mean squared error, R-squared, and Pearson correlation coefficient.

This function computes the mean squared error (MSE) between true and predicted values as a measure of prediction accuracy. It also performs a linear regression analysis between the true and predicted values to obtain the R-squared value, which explains the variance ratio, and the Pearson correlation coefficient, providing insight into the linear relationship strength.

Parameters:
  • y_true (array - like) –

    True values of the dependent variable, must be a 1D list or array.

  • y_pred (array - like) –

    Predicted values as returned by a regressor, must match the dimensions of y_true.

Returns:
  • dict

    A dictionary containing: - 'mse': The mean squared error between the true and predicted values. - 'r2': The R-squared value indicating the proportion of variance in the dependent variable predictable from the independent variable. - 'pearson_corr': The Pearson correlation coefficient indicating the linear relationship strength between the true and predicted values.

Source code in flexynesis/utils.py
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
def evaluate_regressor(y_true, y_pred):
    """
    Evaluate the performance of a regression model using mean squared error, R-squared, and Pearson correlation coefficient.

    This function computes the mean squared error (MSE) between true and predicted values as a measure of prediction accuracy.
    It also performs a linear regression analysis between the true and predicted values to obtain the R-squared value, which
    explains the variance ratio, and the Pearson correlation coefficient, providing insight into the linear relationship strength.

    Args:
        y_true (array-like): True values of the dependent variable, must be a 1D list or array.
        y_pred (array-like): Predicted values as returned by a regressor, must match the dimensions of y_true.

    Returns:
        dict: A dictionary containing:
              - 'mse': The mean squared error between the true and predicted values.
              - 'r2': The R-squared value indicating the proportion of variance in the dependent variable predictable from the independent variable.
              - 'pearson_corr': The Pearson correlation coefficient indicating the linear relationship strength between the true and predicted values.
    """
    mse = mean_squared_error(y_true, y_pred)
    slope, intercept, r_value, p_value, std_err = linregress(y_true,y_pred)
    r2 = r_value**2 
    return {"mse": mse, "r2": r2, "pearson_corr": r_value}

evaluate_survival(outputs, durations, events)

Computes the concordance index (c-index) for survival predictions.

Parameters: - outputs: Predicted risk scores (torch.Tensor or np.array). - durations: True survival times or durations (torch.Tensor or np.array). - events: Event indicators (1=event, 0=censored) (torch.Tensor or np.array).

Returns: - A dictionary containing the c-index.

Source code in flexynesis/utils.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
def evaluate_survival(outputs, durations, events):
    """
    Computes the concordance index (c-index) for survival predictions.

    Parameters:
    - outputs: Predicted risk scores (torch.Tensor or np.array).
    - durations: True survival times or durations (torch.Tensor or np.array).
    - events: Event indicators (1=event, 0=censored) (torch.Tensor or np.array).

    Returns:
    - A dictionary containing the c-index.
    """
    # Ensure all inputs are NumPy arrays
    if isinstance(durations, torch.Tensor):
        durations = durations.numpy()
    if isinstance(events, torch.Tensor):
        events = events.numpy()
    if isinstance(outputs, torch.Tensor):
        outputs = outputs.numpy()

    # Remove entries with NaNs
    valid_mask = ~np.isnan(durations) & ~np.isnan(events)
    if valid_mask.sum() > 0:
        durations = durations[valid_mask]
        events = events[valid_mask]
        outputs = outputs[valid_mask]

    # Compute concordance index (lifelines expects higher risk → lower survival)
    c_index = concordance_index(durations, -outputs, events)
    return {'cindex': c_index}

evaluate_wrapper(method, y_pred_dict, dataset, surv_event_var=None, surv_time_var=None)

Evaluates predictions for different variables within a dataset using appropriate metrics based on the variable type. Supports evaluation for numerical, categorical, and survival data.

This function loops through each variable in the predictions dictionary, determines the type of the variable, and evaluates the predictions using the appropriate method: regression, classification, or survival analysis. It compiles the metrics into a list of dictionaries, which is then converted into a pandas DataFrame.

Parameters:
  • method (str) –

    Identifier for the prediction method or model used.

  • y_pred_dict (dict) –

    A dictionary where keys are variable names and values are arrays of predicted values.

  • dataset (Dataset) –

    A dataset object containing actual values and metadata such as variable types.

  • surv_event_var (str, default: None ) –

    The name of the survival event variable. Required if survival analysis is performed.

  • surv_time_var (str, default: None ) –

    The name of the survival time variable. Required if survival analysis is performed.

Returns:
  • pd.DataFrame: A DataFrame where each row contains the method, variable name, variable type, metric name, and metric value.

Source code in flexynesis/utils.py
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
def evaluate_wrapper(method, y_pred_dict, dataset, surv_event_var = None, surv_time_var = None):
    """
    Evaluates predictions for different variables within a dataset using appropriate metrics based on the variable type. 
    Supports evaluation for numerical, categorical, and survival data.

    This function loops through each variable in the predictions dictionary, determines the type of the variable,
    and evaluates the predictions using the appropriate method: regression, classification, or survival analysis.
    It compiles the metrics into a list of dictionaries, which is then converted into a pandas DataFrame.

    Args:
        method (str): Identifier for the prediction method or model used.
        y_pred_dict (dict): A dictionary where keys are variable names and values are arrays of predicted values.
        dataset (Dataset): A dataset object containing actual values and metadata such as variable types.
        surv_event_var (str, optional): The name of the survival event variable. Required if survival analysis is performed.
        surv_time_var (str, optional): The name of the survival time variable. Required if survival analysis is performed.

    Returns:
        pd.DataFrame: A DataFrame where each row contains the method, variable name, variable type, metric name, and metric value.

    """
    metrics_list = []
    for var in y_pred_dict.keys():
        if dataset.variable_types[var] == 'numerical':
            if var == surv_event_var:
                events = dataset.ann[surv_event_var]
                durations = dataset.ann[surv_time_var]
                metrics = evaluate_survival(y_pred_dict[var], durations, events)
            else:
                ind = ~torch.isnan(dataset.ann[var])
                metrics = evaluate_regressor(dataset.ann[var][ind], y_pred_dict[var][ind].flatten())
        else:
            ind = ~torch.isnan(dataset.ann[var])
            metrics = evaluate_classifier(dataset.ann[var][ind], y_pred_dict[var][ind])

        for metric, value in metrics.items():
            metrics_list.append({
                'method': method,
                'var': var,
                'variable_type': dataset.variable_types[var],
                'metric': metric,
                'value': value
            })
    # Convert the list of metrics to a DataFrame
    return pd.DataFrame(metrics_list)

find_optimal_cutoff(expression, time, event, min_percent=0.1, max_percent=0.9, step=0.01)

Find the optimal cutoff in a continuous variable (e.g., gene expression) that best separates survival curves based on log-rank test.

Parameters: - expression: pd.Series (continuous values) - time: survival time vector (aligned) - event: event indicator vector (aligned) - min_percent, max_percent: range of quantiles to search within - step: fraction of quantile steps to test

Returns: - best_cutoff: value of expression that best separates survival - best_p: log-rank test p-value at that split

Source code in flexynesis/utils.py
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
def find_optimal_cutoff(expression, time, event, min_percent=0.1, max_percent=0.9, step=0.01):
    """
    Find the optimal cutoff in a continuous variable (e.g., gene expression)
    that best separates survival curves based on log-rank test.

    Parameters:
    - expression: pd.Series (continuous values)
    - time: survival time vector (aligned)
    - event: event indicator vector (aligned)
    - min_percent, max_percent: range of quantiles to search within
    - step: fraction of quantile steps to test

    Returns:
    - best_cutoff: value of expression that best separates survival
    - best_p: log-rank test p-value at that split
    """
    quantiles = np.arange(min_percent, max_percent, step)
    cutoffs = expression.quantile(quantiles).unique()

    best_p = 1
    best_cutoff = None

    for cutoff in cutoffs:
        group = expression > cutoff
        if group.nunique() < 2:
            continue
        results = logrank_test(
            time[group], time[~group],
            event[group], event[~group],
            alpha=0.99
        )
        if results.p_value < best_p:
            best_p = results.p_value
            best_cutoff = cutoff

    return best_cutoff, best_p

get_optimal_clusters(data, min_k=2, max_k=10)

Find the optimal number of clusters (k) for k-means clustering on the given data, based on the silhouette score, and return the cluster labels for the optimal k.

Parameters: - data: pandas DataFrame or numpy array, dataset for clustering. - min_k: int, minimum number of clusters to try. - max_k: int, maximum number of clusters to try.

Returns: - int, the optimal number of clusters based on the silhouette score. - DataFrame, silhouette scores for each k. - array, cluster labels for the optimal number of clusters.

Source code in flexynesis/utils.py
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
def get_optimal_clusters(data, min_k=2, max_k=10):
    """
    Find the optimal number of clusters (k) for k-means clustering on the given data,
    based on the silhouette score, and return the cluster labels for the optimal k.

    Parameters:
    - data: pandas DataFrame or numpy array, dataset for clustering.
    - min_k: int, minimum number of clusters to try.
    - max_k: int, maximum number of clusters to try.

    Returns:
    - int, the optimal number of clusters based on the silhouette score.
    - DataFrame, silhouette scores for each k.
    - array, cluster labels for the optimal number of clusters.
    """
    silhouette_scores = []
    cluster_labels_dict = {}  # To store cluster labels for each k

    for k in range(min_k, max_k + 1):
        kmeans = KMeans(n_clusters=k, n_init = 'auto', random_state=42)
        cluster_labels = kmeans.fit_predict(data)
        silhouette_avg = silhouette_score(data, cluster_labels)
        silhouette_scores.append((k, silhouette_avg))
        cluster_labels_dict[k] = cluster_labels  # Store cluster labels
        #print(f"Number of clusters: {k}, Silhouette Score: {silhouette_avg:.4f}")

    # Convert silhouette scores to DataFrame for easier handling and visualization
    silhouette_scores_df = pd.DataFrame(silhouette_scores, columns=['k', 'silhouette_score'])

    # Find the optimal k (number of clusters) with the highest silhouette score
    optimal_k = silhouette_scores_df.loc[silhouette_scores_df['silhouette_score'].idxmax()]['k']

    # Retrieve the cluster labels for the optimal k
    optimal_cluster_labels = cluster_labels_dict[optimal_k]

    return optimal_cluster_labels, optimal_k, silhouette_scores_df

get_predicted_labels(y_pred_dict, dataset, split, method_name)

Generate a DataFrame with class probabilities and associated metadata.

Parameters:
  • y_pred_dict (dict) –

    Dictionary containing predicted probabilities for each variable.

  • dataset

    Dataset object containing variable types, label mappings, and sample information.

  • split (str) –

    Split identifier (e.g., 'train', 'test', or 'val').

  • method_name

    Name of the method used for prediction task

Returns:
  • pd.DataFrame: A DataFrame containing: - sample_id - variable - class label - probability for that class label - known label (y_true) - predicted label (argmax of the probabilities) - train/test split - method_name

Source code in flexynesis/utils.py
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
def get_predicted_labels(y_pred_dict, dataset, split, method_name):
    """
    Generate a DataFrame with class probabilities and associated metadata.

    Args:
        y_pred_dict (dict): Dictionary containing predicted probabilities for each variable.
        dataset: Dataset object containing variable types, label mappings, and sample information.
        split (str): Split identifier (e.g., 'train', 'test', or 'val').
        method_name: Name of the method used for prediction task

    Returns:
        pd.DataFrame: A DataFrame containing:
            - sample_id
            - variable
            - class label
            - probability for that class label
            - known label (y_true)
            - predicted label (argmax of the probabilities)
            - train/test split
            - method_name 
    """
    dfs = []

    for var in y_pred_dict.keys():
        if dataset.variable_types[var] == 'categorical':
            # Predicted probabilities
            probabilities = y_pred_dict[var]

            # Convert class indices to labels if mappings exist
            if var in dataset.label_mappings.keys():
                class_labels = [dataset.label_mappings[var][idx] for idx in range(probabilities.shape[1])]
            else:
                class_labels = [f'class_{i}' for i in range(probabilities.shape[1])]

            # Get true labels (y_true)
            y_true = [dataset.label_mappings[var][int(x.item())] if var in dataset.label_mappings.keys() and not np.isnan(x.item()) else np.nan for x in dataset.ann[var]]

            # Predicted labels (argmax of probabilities)
            y_pred_indices = np.argmax(probabilities, axis=1)
            y_pred = [dataset.label_mappings[var][idx] if var in dataset.label_mappings.keys() else idx for idx in y_pred_indices]

            # Create a DataFrame for each sample and its probabilities
            for i, sample_id in enumerate(dataset.samples):
                for j, class_label in enumerate(class_labels):
                    dfs.append({
                        'sample_id': sample_id,
                        'variable': var,
                        'class_label': class_label,
                        'probability': probabilities[i, j],
                        'known_label': y_true[i],
                        'predicted_label': y_pred[i],
                        'split': split,
                        'method': method_name
                    })
        else:
            # For numerical variables, set class_label and probability to NA
            y_true = [x.item() for x in dataset.ann[var]]
            y_pred = [x.item() for x in y_pred_dict[var]]
            for i, sample_id in enumerate(dataset.samples):
                dfs.append({
                    'sample_id': sample_id,
                    'variable': var,
                    'class_label': np.nan,
                    'probability': np.nan,
                    'known_label': y_true[i],
                    'predicted_label': y_pred[i],
                    'split': split,
                    'method': method_name
                })

    # Combine all rows into a DataFrame
    return pd.DataFrame(dfs)

k_means_clustering(data, k)

Perform k-means clustering on a given pandas DataFrame.

Parameters: - data: pandas DataFrame, where rows are samples and columns are features. - k: int, the number of clusters to form.

Returns: - cluster_labels: A pandas Series indicating the cluster label for each sample. - kmeans: The fitted KMeans instance, which can be used to access cluster centers and other attributes.

Source code in flexynesis/utils.py
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
def k_means_clustering(data, k):
    """
    Perform k-means clustering on a given pandas DataFrame.

    Parameters:
    - data: pandas DataFrame, where rows are samples and columns are features.
    - k: int, the number of clusters to form.

    Returns:
    - cluster_labels: A pandas Series indicating the cluster label for each sample.
    - kmeans: The fitted KMeans instance, which can be used to access cluster centers and other attributes.
    """
    # Initialize the KMeans model
    kmeans = KMeans(n_clusters=k, n_init='auto', random_state=42)

    # Fit the model to the data
    kmeans.fit(data)

    # Extract the cluster labels for each data point
    cluster_labels = pd.Series(kmeans.labels_, index=data.index)

    return cluster_labels, kmeans

louvain_clustering(X, threshold=None, k=None)

Create a graph from pairwise distances within X. You can define a threshold to connect edges or specify k for k-nearest neighbors.

Parameters: - X: numpy array, shape (n_samples, n_features) - threshold: float, distance threshold to create an edge between two nodes. - k: int, number of nearest neighbors to connect for each node.

Returns: - G: a networkx graph

Source code in flexynesis/utils.py
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
def louvain_clustering(X, threshold=None, k=None):
    """
    Create a graph from pairwise distances within X. You can define a threshold to connect edges
    or specify k for k-nearest neighbors.

    Parameters:
    - X: numpy array, shape (n_samples, n_features)
    - threshold: float, distance threshold to create an edge between two nodes.
    - k: int, number of nearest neighbors to connect for each node.

    Returns:
    - G: a networkx graph
    """
    distances = euclidean_distances(X)
    G = nx.Graph()
    for i in range(distances.shape[0]):
        for j in range(i + 1, distances.shape[0]):
            # If a threshold is defined, use it to create edges
            if threshold is not None and distances[i, j] < threshold:
                G.add_edge(i, j, weight=1/distances[i, j])
            # If k is defined, add an edge if j is one of i's k-nearest neighbors
            elif k is not None:
                if np.argsort(distances[i])[:k + 1].__contains__(j):
                    G.add_edge(i, j, weight=1/distances[i, j])
    partition = community_louvain.best_partition(G)

    cluster_labels = np.full(len(X), np.nan, dtype=float)
    # Fill the array with the cluster labels from the partition dictionary
    for node_id, cluster_label in partition.items():
        if node_id in range(len(X)):  # Check if the node_id is a valid index in X
            cluster_labels[node_id] = cluster_label
        else:
            # If node_id is not a valid index in X, it's already set to NaN
            continue

    return cluster_labels, G, partition

optimal_transport_align(embeddings, batch_labels, standardize_by_labels=False)

Align embeddings from two batches using Optimal Transport, preserving the order of samples.

Parameters: - embeddings (pd.DataFrame): A DataFrame where rows are samples and columns are features. - batch_labels (np.ndarray or pd.Series): Batch labels corresponding to the rows of embeddings.

Returns: - aligned_embeddings (pd.DataFrame): A DataFrame containing the aligned embeddings for all samples, with original indices preserved. - aligned_batch_labels (pd.Series): A Series containing the corresponding batch labels for the aligned embeddings.

Source code in flexynesis/utils.py
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
def optimal_transport_align(embeddings, batch_labels, standardize_by_labels = False):
    """
    Align embeddings from two batches using Optimal Transport, preserving the order of samples.

    Parameters:
    - embeddings (pd.DataFrame): A DataFrame where rows are samples and columns are features.
    - batch_labels (np.ndarray or pd.Series): Batch labels corresponding to the rows of embeddings.

    Returns:
    - aligned_embeddings (pd.DataFrame): A DataFrame containing the aligned embeddings for all samples, with original indices preserved.
    - aligned_batch_labels (pd.Series): A Series containing the corresponding batch labels for the aligned embeddings.
    """
    # Ensure batch labels are a NumPy array
    batch_labels_np = np.array(batch_labels)

    # Identify unique batches
    unique_batches = np.unique(batch_labels_np)
    if len(unique_batches) != 2:
        raise ValueError("Optimal transport supports aligning exactly two batches.")

    # Split embeddings by batch, preserving the original indices
    batch1_indices = np.where(batch_labels_np == unique_batches[0])[0]
    batch2_indices = np.where(batch_labels_np == unique_batches[1])[0]

    batch1_embeddings = embeddings.iloc[batch1_indices].to_numpy()
    batch2_embeddings = embeddings.iloc[batch2_indices].to_numpy()

    # Compute the cost matrix (e.g., Euclidean distances)
    cost_matrix = ot.dist(batch1_embeddings, batch2_embeddings, metric='euclidean')

    # Solve the optimal transport problem
    n_samples_1 = batch1_embeddings.shape[0]
    n_samples_2 = batch2_embeddings.shape[0]
    uniform_dist_1 = np.ones(n_samples_1) / n_samples_1
    uniform_dist_2 = np.ones(n_samples_2) / n_samples_2
    transport_plan = ot.emd(uniform_dist_1, uniform_dist_2, cost_matrix)

    # Align batch 2 embeddings by transporting them to batch 1's distribution
    aligned_batch2 = np.dot(transport_plan.T, batch1_embeddings)

    # Create an array to store the aligned embeddings in the original order
    aligned_embeddings = np.zeros_like(embeddings.to_numpy())
    aligned_embeddings[batch1_indices] = batch1_embeddings
    aligned_embeddings[batch2_indices] = aligned_batch2

    # Standardize the aligned embeddings separately for each batch
    if standardize_by_labels: 
        scaler1 = StandardScaler()
        scaler2 = StandardScaler()

        aligned_embeddings[batch1_indices] = scaler1.fit_transform(aligned_embeddings[batch1_indices])
        aligned_embeddings[batch2_indices] = scaler2.fit_transform(aligned_embeddings[batch2_indices])

    # Convert back to pandas DataFrame and Series, preserving indices
    aligned_embeddings_df = pd.DataFrame(aligned_embeddings, columns=embeddings.columns, index=embeddings.index)
    aligned_batch_labels = pd.Series(batch_labels, index=embeddings.index, name="batch_labels")

    return aligned_embeddings_df, aligned_batch_labels

plot_dim_reduced(matrix, labels, method='pca', color_type='categorical', title=None)

Plots the first two dimensions of the transformed input matrix using plotnine, with PCA or UMAP, and includes explained variance for PCA.

Parameters:
  • matrix (array) –

    Input data matrix (n_samples, n_features).

  • labels (list or array) –

    Labels for coloring.

  • method (str, default: 'pca' ) –

    'pca' or 'umap'.

  • color_type (str, default: 'categorical' ) –

    'categorical' or 'numerical'.

  • title (str or None, default: None ) –

    Optional title for the plot.

Source code in flexynesis/utils.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def plot_dim_reduced(matrix, labels, method='pca', color_type='categorical', title=None):
    """
    Plots the first two dimensions of the transformed input matrix using plotnine,
    with PCA or UMAP, and includes explained variance for PCA.

    Args:
        matrix (np.array): Input data matrix (n_samples, n_features).
        labels (list or array): Labels for coloring.
        method (str): 'pca' or 'umap'.
        color_type (str): 'categorical' or 'numerical'.
        title (str or None): Optional title for the plot.
    """
    method = method.lower()

    # Fit transformation
    if method == 'pca':
        transformer = PCA(n_components=2)
        transformed_matrix = transformer.fit_transform(matrix)
        var_exp = transformer.explained_variance_ratio_ * 100
        xlab = f"PC1 ({var_exp[0]:.1f}%)"
        ylab = f"PC2 ({var_exp[1]:.1f}%)"
        colnames = ['PC1', 'PC2']
    elif method == 'umap':
        transformer = UMAP(n_components=2)
        transformed_matrix = transformer.fit_transform(matrix)
        xlab = "UMAP1"
        ylab = "UMAP2"
        colnames = ['UMAP1', 'UMAP2']
    else:
        raise ValueError("Invalid method. Expected 'pca' or 'umap'.")

    # Create DataFrame
    df = pd.DataFrame(transformed_matrix, columns=colnames)
    df["Label"] = list(labels)

    # Title
    plot_title = title if title else f"{method.upper()} Scatter Plot"

    # Plot
    if color_type == 'categorical':
        df["Label"] = df["Label"].astype(str)
        plot = (
            ggplot(df, aes(x=colnames[0], y=colnames[1], color='Label')) +
            geom_point() +
            labs(title=plot_title, x=xlab, y=ylab, color="Labels") +
            theme_minimal()
        )
    elif color_type == 'numerical':
        df["Label"] = pd.to_numeric(df["Label"], errors='coerce')
        plot = (
            ggplot(df, aes(x=colnames[0], y=colnames[1], color='Label')) +
            geom_point() +
            scale_color_gradient(low="blue", high="red") +
            labs(title=plot_title, x=xlab, y=ylab, color="Label") +
            theme_minimal()
        )
    else:
        raise ValueError("Invalid color_type. Choose 'categorical' or 'numerical'.")

    return plot

plot_hazard_ratios(cox_model)

Plots the sorted log hazard ratios using plotnine from a fitted Cox Proportional Hazards model, with 95% CI and statistical significance annotations. Displays the C-index in the top-right.

Source code in flexynesis/utils.py
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
def plot_hazard_ratios(cox_model):
    """
    Plots the sorted log hazard ratios using plotnine from a fitted Cox Proportional Hazards model,
    with 95% CI and statistical significance annotations. Displays the C-index in the top-right.
    """
    # Extract summary
    coef_summary = cox_model.summary[['coef', 'coef lower 95%', 'coef upper 95%', 'p']].copy()
    coef_summary.columns = ['coef', 'coef_lower_95', 'coef_upper_95', 'p']
    coef_summary['variable'] = coef_summary.index

    # Sort by p-value
    coef_summary_sorted = coef_summary.sort_values('p').reset_index(drop=True)

    # Add significance stars
    def significance(p):
        if p < 0.0001:
            return '***'
        elif p < 0.001:
            return '**'
        elif p < 0.05:
            return '*'
        elif p < 0.1:
            return '.'
        else:
            return ''

    coef_summary_sorted['stars'] = coef_summary_sorted['p'].apply(significance)

    # Reverse the order for top-to-bottom importance
    coef_summary_sorted['variable'] = pd.Categorical(
        coef_summary_sorted['variable'],
        categories=coef_summary_sorted['variable'][::-1],
        ordered=True
    )
    c_index = cox_model.concordance_index_

    # Plot
    p = (
        ggplot(coef_summary_sorted, aes(x='coef', y='variable'))
        + geom_errorbarh(
            aes(xmin='coef_lower_95', xmax='coef_upper_95'),
            height=0.2, color='skyblue'
        )
        + geom_point(color='skyblue', size=3)
        + geom_text(aes(label='stars'), nudge_y=0.1, size=10)
        + annotate('vline', xintercept=0, linetype='dashed', color='gray')
        + labs(x='Log Hazard Ratio', y='', title=f'Log Hazard Ratios Sorted by P-Value with 95% CI\n Model C-index: {c_index:.2f}')
        + theme_bw()
        + theme(
            axis_text_y=element_text(size=10),
            axis_text_x=element_text(size=10),
            plot_title=element_text(weight='bold'),
        )
    )
    return p    

plot_kaplan_meier_curves(durations, events, categorical_variable)

Plots Kaplan-Meier survival curves using plotnine and annotates log-rank test p-values.

Source code in flexynesis/utils.py
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
def plot_kaplan_meier_curves(durations, events, categorical_variable):
    """
    Plots Kaplan-Meier survival curves using plotnine and annotates log-rank test p-values.
    """
    # Prepare DataFrame
    data = pd.DataFrame({
        'Duration': durations,
        'Event': events,
        'Group': categorical_variable
    })

    kmf = KaplanMeierFitter()
    survival_curves = []

    # Fit Kaplan-Meier for each group and collect survival data
    for group in data['Group'].unique():
        group_data = data[data['Group'] == group]
        kmf.fit(group_data['Duration'], group_data['Event'], label=str(group))
        surv_df = kmf.survival_function_.reset_index()
        surv_df.columns = ['Time', 'Survival']
        surv_df['Group'] = str(group)
        survival_curves.append(surv_df)

    # Combine all curves
    plot_data = pd.concat(survival_curves)

    # Compute log-rank p-value
    categories = data['Group'].unique()
    p_text = ""
    if len(categories) == 2:
        group1 = data[data['Group'] == categories[0]]
        group2 = data[data['Group'] == categories[1]]
        result = logrank_test(group1['Duration'], group2['Duration'],
                              event_observed_A=group1['Event'],
                              event_observed_B=group2['Event'])
        p_text = f"Log-rank p = {result.p_value:.2e}"
    elif len(categories) > 2:
        result = multivariate_logrank_test(data['Duration'], data['Group'], data['Event'])
        p_text = f"Multivariate log-rank p = {result.p_value:.2e}"
    else:
        p_text = "Only one group — log-rank test not applicable"

    # Create plot
    p = (
        ggplot(plot_data, aes(x='Time', y='Survival', color='Group'))
        + geom_step()
        + labs(x='Time', y='Survival Probability', color='Group')
        + ggtitle('Kaplan-Meier Survival Curves by Group')
        + annotate("text", x=0.1, y=0.1, label=p_text, size=10, ha='left')
        + theme_minimal()
        + theme(legend_title=element_text(size=10, weight='bold'))
        + scale_color_brewer(type='qual', palette='Set1')
    )

    return p

plot_label_concordance_heatmap(labels1, labels2, figsize=(12, 10))

Plot a heatmap reflecting the concordance between two sets of labels using pandas crosstab.

Parameters: - labels1: The first set of labels. - labels2: The second set of labels.

Source code in flexynesis/utils.py
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
def plot_label_concordance_heatmap(labels1, labels2, figsize=(12, 10)):
    """
    Plot a heatmap reflecting the concordance between two sets of labels using pandas crosstab.

    Parameters:
    - labels1: The first set of labels.
    - labels2: The second set of labels.
    """
    # Compute the cross-tabulation
    ct = pd.crosstab(pd.Series(labels1, name='Labels Set 1'), pd.Series(labels2, name='Labels Set 2'))
    # Normalize the cross-tabulation matrix column-wise
    ct_normalized = ct.div(ct.sum(axis=1), axis=0)

    # Plot the heatmap
    plt.figure(figsize = figsize)
    sns.heatmap(ct_normalized, annot=True,cmap='viridis', linewidths=.5)# col_cluster=False)
    plt.title('Concordance between label groups')
    plt.show()

plot_pr_curves(y_true, y_probs)

Plot Precision-Recall (PR) curves using plotnine for binary or multiclass classification.

Parameters:
  • y_true (array - like) –

    True class labels.

  • y_probs (array - like) –

    Predicted probabilities (n_samples, n_classes).

Source code in flexynesis/utils.py
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def plot_pr_curves(y_true, y_probs):
    """
    Plot Precision-Recall (PR) curves using plotnine for binary or multiclass classification.

    Args:
        y_true (array-like): True class labels.
        y_probs (array-like): Predicted probabilities (n_samples, n_classes).
    """
    y_true = np.array(y_true)
    n_classes = y_probs.shape[1]
    plot_data = []

    if n_classes == 2:
        # Binary classification
        precision, recall, _ = precision_recall_curve(y_true, y_probs[:, 1])
        aupr = average_precision_score(y_true, y_probs[:, 1])
        plot_data.append(pd.DataFrame({
            'recall': recall,
            'precision': precision,
            'label': [f'Class 1 (AUPR = {aupr:.2f})'] * len(recall)
        }))
    else:
        # Multiclass classification (one-vs-rest)
        classes = np.arange(n_classes)
        y_true_bin = label_binarize(y_true, classes=classes)

        for i in classes:
            precision, recall, _ = precision_recall_curve(y_true_bin[:, i], y_probs[:, i])
            aupr = average_precision_score(y_true_bin[:, i], y_probs[:, i])
            df = pd.DataFrame({
                'recall': recall,
                'precision': precision,
                'label': [f'Class {i} (AUPR = {aupr:.2f})'] * len(recall)
            })
            plot_data.append(df)

    # Combine all data
    all_data = pd.concat(plot_data, ignore_index=True)

    # Plot using plotnine
    pr_plot = (
        ggplot(all_data, aes(x='recall', y='precision', color='label')) +
        geom_line(size=1.2) +
        labs(
            title='Precision-Recall Curve',
            x='Recall',
            y='Precision'
        ) +
        theme_minimal()
    )

    return pr_plot

plot_roc_curves(y_true, y_probs)

Plot ROC curves using plotnine for binary or multiclass classification.

Parameters:
  • y_true (array - like) –

    True class labels.

  • y_probs (array - like) –

    Predicted probabilities (n_samples, n_classes).

Source code in flexynesis/utils.py
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
def plot_roc_curves(y_true, y_probs):
    """
    Plot ROC curves using plotnine for binary or multiclass classification.

    Args:
        y_true (array-like): True class labels.
        y_probs (array-like): Predicted probabilities (n_samples, n_classes).
    """
    y_true = np.array(y_true)
    n_classes = y_probs.shape[1]
    plot_data = []

    if n_classes == 2:
        # Binary classification
        fpr, tpr, _ = roc_curve(y_true, y_probs[:, 1])
        auc_score = roc_auc_score(y_true, y_probs[:, 1])
        plot_data.append(pd.DataFrame({'fpr': fpr, 'tpr': tpr, 'label': [f'Class 1 (AUC = {auc_score:.2f})'] * len(fpr)}))
    else:
        # Multiclass classification
        classes = np.arange(n_classes)
        y_true_bin = label_binarize(y_true, classes=classes)

        for i in classes:
            fpr, tpr, _ = roc_curve(y_true_bin[:, i], y_probs[:, i])
            auc_score = roc_auc_score(y_true_bin[:, i], y_probs[:, i])
            df = pd.DataFrame({
                'fpr': fpr,
                'tpr': tpr,
                'label': [f'Class {i} (AUC = {auc_score:.2f})'] * len(fpr)
            })
            plot_data.append(df)

    # Combine all data
    all_data = pd.concat(plot_data, ignore_index=True)

    # Plot using plotnine
    roc_plot = (
        ggplot(all_data, aes(x='fpr', y='tpr', color='label')) +
        geom_line(size=1.2) +
        geom_abline(intercept=0, slope=1, linetype='dashed', color='gray') +
        labs(
            title='ROC Curve',
            x='False Positive Rate',
            y='True Positive Rate'
        ) +
        theme_minimal()
    )

    return roc_plot

plot_scatter(true_values, predicted_values)

Plots a scatterplot of true vs predicted values, with a regression line and annotated with the Pearson correlation coefficient.

Parameters:
  • true_values (list or array) –

    True values

  • predicted_values (list or array) –

    Predicted values

Source code in flexynesis/utils.py
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def plot_scatter(true_values, predicted_values):
    """
    Plots a scatterplot of true vs predicted values, with a regression line and annotated with the Pearson correlation coefficient.

    Args:
        true_values (list or np.array): True values
        predicted_values (list or np.array): Predicted values
    """
    # Convert to numpy arrays (if not already)
    true_values = np.array(true_values)
    predicted_values = np.array(predicted_values)

    # Filter out NaN values
    not_nan_indices = ~np.isnan(true_values) & ~np.isnan(predicted_values)
    true_values = true_values[not_nan_indices]
    predicted_values = predicted_values[not_nan_indices]

    # Calculate correlation coefficient
    corr, _ = pearsonr(true_values, predicted_values)
    corr_text = f"Pearson r: {corr:.2f}"

    # Create DataFrame
    df = pd.DataFrame({"True Values": true_values, "Predicted Values": predicted_values})

    # Generate scatter plot with regression line
    plot = (
        ggplot(df, aes(x="True Values", y="Predicted Values")) +
        geom_point(alpha=0.5) +
        geom_smooth(method='lm', color='red') +
        annotate("text", x=min(true_values), y=max(predicted_values), label=corr_text, ha='left', va='top', size=10) +
        labs(
            title="True vs Predicted Values",
            x="True Values",
            y="Predicted Values"
        ) +
        theme_minimal()
    )

    return plot

reciprocal_pca_mnn(embeddings, batch_labels, n_components=10, n_neighbors=5, standardize_by_labels=False, random_state=None)

Align embeddings from two batches using Reciprocal PCA (rPCA) and Mutual Nearest Neighbors (MNN).

Parameters: - embeddings (pd.DataFrame): A DataFrame where rows are samples and columns are features. - batch_labels (np.ndarray or pd.Series): Batch labels corresponding to the rows of embeddings. - n_components (int): Number of principal components to use for alignment. - n_neighbors (int): Number of mutual nearest neighbors to use for finding anchors. - standardize_by_labels (bool): Whether to standardize embeddings for each batch separately. - random_state (int, optional): Random seed for reproducibility.

Returns: - aligned_embeddings (pd.DataFrame): A DataFrame containing the aligned embeddings for all samples, with original indices preserved. - aligned_batch_labels (pd.Series): A Series containing the corresponding batch labels for the aligned embeddings.

Source code in flexynesis/utils.py
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
def reciprocal_pca_mnn(embeddings, batch_labels, n_components=10, n_neighbors=5, standardize_by_labels=False, random_state=None):
    """
    Align embeddings from two batches using Reciprocal PCA (rPCA) and Mutual Nearest Neighbors (MNN).

    Parameters:
    - embeddings (pd.DataFrame): A DataFrame where rows are samples and columns are features.
    - batch_labels (np.ndarray or pd.Series): Batch labels corresponding to the rows of embeddings.
    - n_components (int): Number of principal components to use for alignment.
    - n_neighbors (int): Number of mutual nearest neighbors to use for finding anchors.
    - standardize_by_labels (bool): Whether to standardize embeddings for each batch separately.
    - random_state (int, optional): Random seed for reproducibility.

    Returns:
    - aligned_embeddings (pd.DataFrame): A DataFrame containing the aligned embeddings for all samples, with original indices preserved.
    - aligned_batch_labels (pd.Series): A Series containing the corresponding batch labels for the aligned embeddings.
    """
    # Ensure batch labels are a NumPy array
    batch_labels_np = np.array(batch_labels)

    # Identify unique batches
    unique_batches = np.unique(batch_labels_np)
    if len(unique_batches) != 2:
        raise ValueError("Reciprocal PCA supports aligning exactly two batches.")

    # Split embeddings by batch, preserving the original indices
    batch1_indices = np.where(batch_labels_np == unique_batches[0])[0]
    batch2_indices = np.where(batch_labels_np == unique_batches[1])[0]

    batch1_embeddings = embeddings.iloc[batch1_indices].to_numpy()
    batch2_embeddings = embeddings.iloc[batch2_indices].to_numpy()

    # Standardize embeddings separately for each batch if required
    if standardize_by_labels:
        batch1_embeddings = (batch1_embeddings - batch1_embeddings.mean(axis=0)) / batch1_embeddings.std(axis=0)
        batch2_embeddings = (batch2_embeddings - batch2_embeddings.mean(axis=0)) / batch2_embeddings.std(axis=0)

    # Perform PCA on both batches
    pca1 = PCA(n_components=n_components, random_state=random_state)
    pca2 = PCA(n_components=n_components, random_state=random_state)

    batch1_pca = pca1.fit_transform(batch1_embeddings)
    batch2_pca = pca2.fit_transform(batch2_embeddings)

    # Reciprocal PCA: Project each dataset into the other's PCA space
    batch1_to_batch2 = pca2.transform(batch1_embeddings)
    batch2_to_batch1 = pca1.transform(batch2_embeddings)

    # Use MNN to identify anchors
    neighbors1 = NearestNeighbors(n_neighbors=n_neighbors).fit(batch2_to_batch1)
    neighbors2 = NearestNeighbors(n_neighbors=n_neighbors).fit(batch1_to_batch2)

    distances1, indices1 = neighbors1.kneighbors(batch1_pca)
    distances2, indices2 = neighbors2.kneighbors(batch2_pca)

    # Identify mutual nearest neighbors
    mutual_anchors = []
    for i, neighbors in enumerate(indices1):
        for neighbor in neighbors:
            if i in indices2[neighbor]:
                mutual_anchors.append((i, neighbor))

    if not mutual_anchors:
        raise ValueError("No mutual nearest neighbors (MNN) found between the batches.")

    # Align the datasets using anchors
    mutual_anchors = np.array(mutual_anchors)
    batch1_anchor_indices = mutual_anchors[:, 0]
    batch2_anchor_indices = mutual_anchors[:, 1]

    # Compute the transformation to align the datasets
    batch1_aligned = batch1_pca[batch1_anchor_indices]
    batch2_aligned = batch2_pca[batch2_anchor_indices]

    alignment_matrix = np.linalg.pinv(batch2_aligned) @ batch1_aligned
    aligned_batch2 = batch2_pca @ alignment_matrix

    # Combine aligned embeddings
    aligned_embeddings = np.zeros((embeddings.shape[0], n_components))
    aligned_embeddings[batch1_indices] = batch1_pca
    aligned_embeddings[batch2_indices] = aligned_batch2

    # Convert back to pandas DataFrame and Series, preserving indices
    aligned_embeddings_df = pd.DataFrame(aligned_embeddings, 
                                         columns=[f"rPCA_{i+1}" for i in range(n_components)], 
                                         index=embeddings.index)
    aligned_batch_labels = pd.Series(batch_labels, index=embeddings.index, name="batch_labels")

    return aligned_embeddings_df, aligned_batch_labels

remove_batch_associated_variables(data, variable_types, target_dict, batch_dict=None, mi_threshold=0.1)

Filter the data matrix to keep only the columns that are predictive of the target variables and not predictive of the batch variables.

Parameters:
  • data (DataFrame) –

    The data matrix.

  • target_dict (dict) –

    A dictionary of target variables.

  • batch_dict (dict, default: None ) –

    A dictionary of batch variables.

  • variable_types (dict) –

    A dictionary of variable types (either "numerical" or "categorical").

  • mi_threshold (float, default: 0.1 ) –

    The mutual information threshold for a column to be considered predictive. Defaults to 0.1.

Returns:
  • pd.DataFrame: The filtered data matrix.

Source code in flexynesis/utils.py
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
def remove_batch_associated_variables(data, variable_types, target_dict, batch_dict = None, mi_threshold=0.1):
    """
    Filter the data matrix to keep only the columns that are predictive of the target variables 
    and not predictive of the batch variables.

    Args:
        data (pd.DataFrame): The data matrix.
        target_dict (dict): A dictionary of target variables.
        batch_dict (dict): A dictionary of batch variables.
        variable_types (dict): A dictionary of variable types (either "numerical" or "categorical").
        mi_threshold (float, optional): The mutual information threshold for a column to be considered predictive.
                                        Defaults to 0.1.

    Returns:
        pd.DataFrame: The filtered data matrix.
    """
    # Convert target and batch tensors to numpy
    target_dict_np = {k: v.numpy() for k, v in target_dict.items()}

    important_features = set()

    # Find important features for target variables
    for var_name, target in target_dict_np.items():
        # Skip if all values are missing
        if np.all(np.isnan(target)):
            continue

        # Subset data and target where target is not missing
        not_missing = ~np.isnan(target)
        data_sub = data[not_missing]
        target_sub = target[not_missing]

        if variable_types[var_name] == "categorical":
            clf = RandomForestClassifier()
        else:  # numerical
            clf = RandomForestRegressor()

        clf = clf.fit(data_sub, target_sub)
        model = SelectFromModel(clf, prefit=True)
        important_features.update(data.columns[model.get_support()])

    if batch_dict is not None:
        batch_dict_np = {k: v.numpy() for k, v in batch_dict.items()}
        # Compute mutual information for batch variables
        for var_name, batch in batch_dict_np.items():
            # Skip if all values are missing
            if np.all(np.isnan(batch)):
                continue

            # Subset data and batch where batch is not missing
            not_missing = ~np.isnan(batch)
            data_sub = data[not_missing]
            batch_sub = batch[not_missing]

            if variable_types[var_name] == "categorical":
                mi = mutual_info_classif(data_sub, batch_sub)
            else:  # numerical
                mi = mutual_info_regression(data_sub, batch_sub)

            # Remove features with high mutual information with batch variables
            important_features -= set(data.columns[mi > mi_threshold])

    return data[list(important_features)]

scale_and_standardize_by_labels(data_matrix, labels)

Scale and standardize data_matrix by factor labels. Data is split by factors and each subset is scaled/standardized.

Parameters: - data_matrix (numpy.ndarray): The matrix of shape (n_samples, n_features). - labels (numpy.ndarray): A 1D array of labels corresponding to each sample.

Returns: - scaled_data_matrix (numpy.ndarray): The scaled and standardized data.

Source code in flexynesis/utils.py
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
def scale_and_standardize_by_labels(data_matrix, labels):

    """
    Scale and standardize data_matrix by factor labels.
    Data is split by factors and each subset is scaled/standardized. 

    Parameters:
    - data_matrix (numpy.ndarray): The matrix of shape (n_samples, n_features).
    - labels (numpy.ndarray): A 1D array of labels corresponding to each sample.

    Returns:
    - scaled_data_matrix (numpy.ndarray): The scaled and standardized data.
    """
    # Ensure inputs are numpy arrays
    data_matrix = np.asarray(data_matrix)
    labels = np.asarray(labels)

    # Initialize array for scaled embeddings
    scaled_data_matrix = np.zeros_like(data_matrix)

    # Process each batch independently
    unique_batches = np.unique(labels)
    for batch in unique_batches:
        # Get indices for the current batch
        batch_indices = np.where(labels == batch)[0]

        # Extract embeddings for the current batch
        batch_data = data_matrix[batch_indices, :]

        # Standardize: Zero mean, unit variance
        scaler = StandardScaler()
        batch_data_scaled = scaler.fit_transform(batch_data)

        # Assign scaled embeddings back to the result array
        scaled_data_matrix[batch_indices, :] = batch_data_scaled

    return scaled_data_matrix