DirectPred

Bases: LightningModule

A fully connected network for multi-omics integration with supervisor heads.

Attributes:
  • config (dict) –

    Configuration settings for the model, including learning rates and dimensions.

  • dataset (dict) –

    The MultiOmicDataset object containing the data and metadata.

  • target_variables (list) –

    A list of target variable names that the model aims to predict.

  • batch_variables (list) –

    A list of variables used for batch correction. Defaults to None.

  • surv_event_var (str) –

    The name of the survival event variable. Defaults to None.

  • surv_time_var (str) –

    The name of the survival time variable. Defaults to None.

  • use_loss_weighting (bool) –

    Whether to use loss weighting in the model. Defaults to True.

  • device_type (str) –

    Type of device to run the model ('gpu' or 'cpu'). Defaults to None.

Source code in flexynesis/models/direct_pred.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
class DirectPred(pl.LightningModule):
    """
    A fully connected network for multi-omics integration with supervisor heads.

    Attributes:
        config (dict): Configuration settings for the model, including learning rates and dimensions.
        dataset: The MultiOmicDataset object containing the data and metadata.
        target_variables (list): A list of target variable names that the model aims to predict.
        batch_variables (list, optional): A list of variables used for batch correction. Defaults to None.
        surv_event_var (str, optional): The name of the survival event variable. Defaults to None.
        surv_time_var (str, optional): The name of the survival time variable. Defaults to None.
        use_loss_weighting (bool, optional): Whether to use loss weighting in the model. Defaults to True.
        device_type (str, optional): Type of device to run the model ('gpu' or 'cpu'). Defaults to None.
    """

    def __init__(self, config, dataset, target_variables, batch_variables = None, 
                 surv_event_var = None, surv_time_var = None, use_loss_weighting = True,
                device_type = None):
        super(DirectPred, self).__init__()
        self.config = config
        self.target_variables = target_variables
        self.surv_event_var = surv_event_var
        self.surv_time_var = surv_time_var
        # both surv event and time variables are assumed to be numerical variables
        # we create only one survival variable for the pair (surv_time_var and surv_event_var)
        if self.surv_event_var is not None and self.surv_time_var is not None:
            self.target_variables = self.target_variables + [self.surv_event_var]
        self.batch_variables = batch_variables
        self.variables = self.target_variables + batch_variables if batch_variables else self.target_variables
        self.feature_importances = {}
        self.use_loss_weighting = use_loss_weighting
        self.device_type = device_type

        if self.use_loss_weighting:
            # Initialize log variance parameters for uncertainty weighting
            self.log_vars = nn.ParameterDict()
            for var in self.variables:
                self.log_vars[var] = nn.Parameter(torch.zeros(1))

        self.variable_types = dataset.variable_types
        self.ann = dataset.ann
        self.layers = list(dataset.dat.keys())
        self.input_dims = [len(dataset.features[self.layers[i]]) for i in range(len(self.layers))]

        self.encoders = nn.ModuleList([
            MLP(input_dim=self.input_dims[i],
                # define hidden_dim size relative to the input_dim size
                hidden_dim=int(self.input_dims[i] * self.config['hidden_dim_factor']),
                output_dim=self.config['latent_dim']) for i in range(len(self.layers))])

        self.MLPs = nn.ModuleDict()  # using ModuleDict to store multiple MLPs
        for var in self.variables:
            if self.variable_types[var] == 'numerical':
                num_class = 1
            else:
                num_class = len(np.unique(self.ann[var]))
            self.MLPs[var] = MLP(input_dim=self.config['latent_dim'] * len(self.layers),
                                 hidden_dim=self.config['supervisor_hidden_dim'],
                                 output_dim=num_class)

    def forward(self, x_list):
        """
        Forward pass of the DirectPred model.

        Args:
            x_list (list of torch.Tensor): A list of input matrices (omics layers), one for each layer.

        Returns:
            dict: A dictionary where each key-value pair corresponds to the target variable name and its predicted output respectively.
        """
        embeddings_list = []
        # Process each input matrix with its corresponding Encoder
        for i, x in enumerate(x_list):
            embeddings_list.append(self.encoders[i](x))
        embeddings_concat = torch.cat(embeddings_list, dim=1)

        outputs = {}
        for var, mlp in self.MLPs.items():
            outputs[var] = mlp(embeddings_concat)
        return outputs  


    def configure_optimizers(self):
        """
        Configure the optimizer for the DirectPred model.

        Returns:
            torch.optim.Optimizer: The configured optimizer.
        """

        optimizer = torch.optim.Adam(self.parameters(), lr=self.config['lr'])
        return optimizer

    def compute_loss(self, var, y, y_hat):
        """
        Computes the loss for a specific variable based on whether the variable is numerical or categorical.
        Handles missing labels by excluding them from the loss calculation.

        Args:
            var (str): The name of the variable for which the loss is being calculated.
            y (torch.Tensor): The true labels or values for the variable.
            y_hat (torch.Tensor): The predicted labels or values output by the model.

        Returns:
            torch.Tensor: The calculated loss tensor for the variable. If there are no valid labels or values
                          to compute the loss (all are missing), returns a zero loss tensor with gradient enabled.

        The method first checks the type of the variable (`var`) from `variable_types`. If the variable is
        numerical, it computes the mean squared error loss. For categorical variables, it calculates the
        cross-entropy loss. The method ensures to ignore any instances where the labels are missing (NaN for
        numerical or -1 for categorical as assumed missing value encoding) when calculating the loss.
        """
        if self.variable_types[var] == 'numerical':
            # Ignore instances with missing labels for numerical variables
            valid_indices = ~torch.isnan(y)
            if valid_indices.sum() > 0:  # only calculate loss if there are valid targets
                y_hat = y_hat[valid_indices]
                y = y[valid_indices]
                loss = F.mse_loss(torch.flatten(y_hat), y.float())
            else:
                loss = torch.tensor(0.0, device=y_hat.device, requires_grad=True) # if no valid labels, set loss to 0
        else:
            # Ignore instances with missing labels for categorical variables
            # Assuming that missing values were encoded as -1
            valid_indices = (y != -1) & (~torch.isnan(y))
            if valid_indices.sum() > 0:  # only calculate loss if there are valid targets
                y_hat = y_hat[valid_indices]
                y = y[valid_indices]
                loss = F.cross_entropy(y_hat, y.long())
            else: 
                loss = torch.tensor(0.0, device=y_hat.device, requires_grad=True)
        return loss

    def compute_total_loss(self, losses):
        """
        Computes the total loss from a dictionary of individual losses. This method can compute
        either weighted or unweighted total loss based on the model configuration. If loss weighting
        is enabled and there are multiple loss components, it uses uncertainty-based weighting.
        See Kendall A. et al, https://arxiv.org/abs/1705.07115.

        Args:
            losses (dict of torch.Tensor): A dictionary where each key is a variable name and
                                           each value is the loss tensor associated with that variable.

        Returns:
            torch.Tensor: The total loss computed across all inputs, either weighted or unweighted.

        The method checks if loss weighting is used (`use_loss_weighting`) and if there are multiple
        losses to weight. If so, it computes the weighted sum of losses, where the weight involves
        the exponential of the negative log variance (acting as precision) associated with each loss,
        added to the log variance itself. This approach helps in balancing the contribution of each
        loss component based on its uncertainty. If loss weighting is not used, or there is only one
        loss component, it sums up the losses directly.
        """
        if self.use_loss_weighting and len(losses) > 1:
            # Compute weighted loss for each loss 
            # Weighted loss = precision * loss + log-variance
            total_loss = sum(torch.exp(-self.log_vars[name]) * loss + self.log_vars[name] for name, loss in losses.items())
        else:
            # Compute unweighted total loss
            total_loss = sum(losses.values())
        return total_loss

    def training_step(self, train_batch, batch_idx, log = True):
        """
        Executes one training step using a single batch from the training dataset.

        Args:
            train_batch (tuple): The batch to train on, which includes input data and targets.
            batch_idx (int): Index of the current batch in the sequence.
            log (bool, optional): Whether to log the loss metrics to TensorBoard. Defaults to True.

        Returns:
            torch.Tensor: The total loss computed for the batch.
        """

        dat, y_dict, samples = train_batch       
        layers = dat.keys()
        x_list = [dat[x] for x in layers]
        outputs = self.forward(x_list)
        losses = {}
        for var in self.variables:
            if var == self.surv_event_var:
                durations = y_dict[self.surv_time_var]
                events = y_dict[self.surv_event_var] 
                risk_scores = outputs[var] #output of MLP
                loss = cox_ph_loss(risk_scores, durations, events)
            else:
                y_hat = outputs[var]
                y = y_dict[var]
                loss = self.compute_loss(var, y, y_hat)
            losses[var] = loss

        total_loss = self.compute_total_loss(losses)
        # add train loss for logging
        losses['train_loss'] = total_loss
        if log:
            self.log_dict(losses, on_step=False, on_epoch=True, prog_bar=True)
        return total_loss

    def validation_step(self, val_batch, batch_idx, log = True):
        """
        Executes one validation step using a single batch from the validation dataset.

        Args:
            val_batch (tuple): The batch to validate on, which includes input data and targets.
            batch_idx (int): Index of the current batch in the sequence.
            log (bool, optional): Whether to log the loss metrics to TensorBoard. Defaults to True.

        Returns:
            torch.Tensor: The total loss computed for the batch.
        """
        dat, y_dict, samples = val_batch       
        layers = dat.keys()
        x_list = [dat[x] for x in layers]
        outputs = self.forward(x_list)
        losses = {}
        for var in self.variables:
            if var == self.surv_event_var:
                durations = y_dict[self.surv_time_var]
                events = y_dict[self.surv_event_var] 
                risk_scores = outputs[var] #output of MLP
                loss = cox_ph_loss(risk_scores, durations, events)
            else:
                y_hat = outputs[var]
                y = y_dict[var]
                loss = self.compute_loss(var, y, y_hat)
            losses[var] = loss
        total_loss = sum(losses.values())
        losses['val_loss'] = total_loss
        if log:
            self.log_dict(losses, on_step=False, on_epoch=True, prog_bar=True)
        return total_loss

    def predict(self, dataset):
        """
        Evaluate the model on a dataset using batching.

        Args:
            dataset (MultiOmicDataset): dataset containing input matrices for each omics layer.

        Returns:
            dict: Predicted values mapped by target variable names.
        """
        self.eval()  # Set the model to evaluation mode
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.to(device)  # Move the model to the appropriate device

        # Create a DataLoader with a practical batch size
        dataloader = DataLoader(dataset, batch_size=64, shuffle=False)  # Adjust the batch size as needed

        predictions = {var: [] for var in self.variables}  # Initialize prediction storage

        # Process each batch
        for batch in dataloader:
            dat, y_dict, samples = batch
            x_list = [dat[x].to(device) for x in dat.keys()]  # Prepare the data batch for processing

            # Perform the forward pass
            outputs = self.forward(x_list)

            # Collect predictions for each variable
            for var in self.variables:
                y_pred = outputs[var].detach().cpu().numpy()  # Move outputs back to CPU and convert to numpy
                if dataset.variable_types[var] == 'categorical':
                    predictions[var].extend(np.argmax(y_pred, axis=1))
                else:
                    predictions[var].extend(y_pred)

        # Convert lists to arrays if necessary, depending on the downstream use-case
        predictions = {var: np.array(predictions[var]) for var in predictions}

        return predictions

    def transform(self, dataset):
        """
        Transforms the input data into a lower-dimensional representation using trained encoders.

        Args:
            dataset: The dataset containing the input data.

        Returns:
            pd.DataFrame: DataFrame containing the transformed data.
        """
        self.eval()  # Set the model to evaluation mode
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.to(device)  # Move the model to the appropriate device

        dataloader = DataLoader(dataset, batch_size=64, shuffle=False)  # Adjust the batch size as needed

        embeddings_list = []  # Initialize a list to collect all batch embeddings
        sample_names = []  # List to collect sample names

        # Process each batch
        for batch in dataloader:
            dat, _, samples = batch
            batch_embeddings = []
            # Process each input matrix with its corresponding Encoder
            for i, x in enumerate(dat.values()):
                x = x.to(device)  # Move data to GPU
                encoded_x = self.encoders[i](x)  # Transform data using the corresponding encoder
                batch_embeddings.append(encoded_x)

            # Concatenate all embeddings from the current batch
            embeddings_batch_concat = torch.cat(batch_embeddings, dim=1)
            embeddings_list.append(embeddings_batch_concat.detach().cpu())  # Move tensor back to CPU and detach
            sample_names.extend(samples)  # Collect sample names

        # Concatenate all batch embeddings into one tensor
        embeddings_concat = torch.cat(embeddings_list, dim=0)

        # Converting tensor to numpy array and then to DataFrame
        embeddings_df = pd.DataFrame(embeddings_concat.numpy(), 
                                     index=sample_names,  # Set DataFrame index to sample names
                                     columns=[f"E{dim}" for dim in range(embeddings_concat.shape[1])])
        return embeddings_df

    # Adaptor forward function for captum integrated gradients. 
    def forward_target(self, *args):
        input_data = list(args[:-2])  # one or more tensors (one per omics layer)
        target_var = args[-2]  # target variable of interest
        steps = args[-1]  # number of steps for IntegratedGradients().attribute 
        outputs_list = []
        for i in range(steps):
            # get list of tensors for each step into a list of tensors
            x_step = [input_data[j][i] for j in range(len(input_data))]
            out = self.forward(x_step)
            outputs_list.append(out[target_var])
        return torch.cat(outputs_list, dim = 0)

    def compute_feature_importance(self, dataset, target_var, steps=5, batch_size = 64):
        """
        Computes the feature importance for each variable in the dataset using the Integrated Gradients method.
        This method measures the importance of each feature by attributing the prediction output to each input feature.

        Args:
            dataset: The dataset object containing the features and data.
            target_var (str): The target variable for which feature importance is calculated.
            steps (int, optional): The number of steps to use for integrated gradients approximation. Defaults to 5.
            batch_size (int, optional): The size of the batch to process the dataset. Defaults to 64.

        Returns:
            pd.DataFrame: A DataFrame containing feature importances across different variables and data modalities.
                          Columns include 'target_variable', 'target_class', 'target_class_label', 'layer', 'name',
                          and 'importance'.

        This function adjusts the device setting based on the availability of GPUs and performs the computation using
        Integrated Gradients. It processes batches of data, aggregates results across batches, and formats the output
        into a readable DataFrame which is then stored in the model's attribute for later use or analysis.
        """
        device = torch.device("cuda" if self.device_type == 'gpu' and torch.cuda.is_available() else 'cpu')
        self.to(device)

        dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
        ig = IntegratedGradients(self.forward_target)

        if dataset.variable_types[target_var] == 'numerical':
            num_class = 1
        else:
            num_class = len(np.unique([y[target_var] for _, y, _ in dataset]))

        aggregated_attributions = [[] for _ in range(num_class)]
        for batch in dataloader:
            dat, _, _ = batch
            x_list = [dat[x].to(device) for x in dat.keys()]
            input_data = tuple([data.unsqueeze(0).requires_grad_() for data in x_list])
            baseline = tuple(torch.zeros_like(x) for x in input_data)
            if num_class == 1:
                # returns a tuple of tensors (one per data modality)
                attributions = ig.attribute(input_data, baseline, 
                                             additional_forward_args=(target_var, steps), 
                                             n_steps=steps)
                aggregated_attributions[0].append(attributions)
            else:
                for target_class in range(num_class):
                    # returns a tuple of tensors (one per data modality)
                    attributions = ig.attribute(input_data, baseline, 
                                                 additional_forward_args=(target_var, steps), 
                                                 target=target_class, n_steps=steps)
                    aggregated_attributions[target_class].append(attributions)

        # For each target class and for each data modality/layer, concatenate attributions accross batches 
        layers = list(dataset.dat.keys())
        num_layers = len(layers)
        processed_attributions = [] 
        # Process each class
        for class_idx in range(len(aggregated_attributions)):
            class_attr = aggregated_attributions[class_idx]
            layer_attributions = []
            # Process each layer within the class
            for layer_idx in range(num_layers):
                # Extract all batch tensors for this layer across all batches for the current class
                layer_tensors = [batch_attr[layer_idx] for batch_attr in class_attr]
                # Concatenate tensors along the batch dimension
                attr_concat = torch.cat(layer_tensors, dim=1)
                layer_attributions.append(attr_concat)
            processed_attributions.append(layer_attributions)

        # compute absolute importance and move to cpu 
        abs_attr = [[torch.abs(a).cpu() for a in attr_class] for attr_class in processed_attributions]
        # average over samples 
        imp = [[a.mean(dim=1) for a in attr_class] for attr_class in abs_attr]
        # move the model also back to cpu (if not already on cpu)
        self.to('cpu')

        # combine into a single data frame
        df_list = []
        for i in range(num_class):
            for j in range(len(layers)):
                features = dataset.features[layers[j]]
                # Ensure tensors are already on CPU before converting to numpy
                importances = imp[i][j][0].detach().numpy()
                target_class_label = dataset.label_mappings[target_var].get(i) if target_var in dataset.label_mappings else ''
                df_list.append(pd.DataFrame({'target_variable': target_var, 
                                             'target_class': i, 
                                             'target_class_label': target_class_label,
                                             'layer': layers[j], 
                                             'name': features, 
                                             'importance': importances}))    
        df_imp = pd.concat(df_list, ignore_index=True)
        # save the computed scores in the model
        self.feature_importances[target_var] = df_imp

compute_feature_importance(dataset, target_var, steps=5, batch_size=64)

Computes the feature importance for each variable in the dataset using the Integrated Gradients method. This method measures the importance of each feature by attributing the prediction output to each input feature.

Parameters:
  • dataset

    The dataset object containing the features and data.

  • target_var (str) –

    The target variable for which feature importance is calculated.

  • steps (int, default: 5 ) –

    The number of steps to use for integrated gradients approximation. Defaults to 5.

  • batch_size (int, default: 64 ) –

    The size of the batch to process the dataset. Defaults to 64.

Returns:
  • pd.DataFrame: A DataFrame containing feature importances across different variables and data modalities. Columns include 'target_variable', 'target_class', 'target_class_label', 'layer', 'name', and 'importance'.

This function adjusts the device setting based on the availability of GPUs and performs the computation using Integrated Gradients. It processes batches of data, aggregates results across batches, and formats the output into a readable DataFrame which is then stored in the model's attribute for later use or analysis.

Source code in flexynesis/models/direct_pred.py
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
def compute_feature_importance(self, dataset, target_var, steps=5, batch_size = 64):
    """
    Computes the feature importance for each variable in the dataset using the Integrated Gradients method.
    This method measures the importance of each feature by attributing the prediction output to each input feature.

    Args:
        dataset: The dataset object containing the features and data.
        target_var (str): The target variable for which feature importance is calculated.
        steps (int, optional): The number of steps to use for integrated gradients approximation. Defaults to 5.
        batch_size (int, optional): The size of the batch to process the dataset. Defaults to 64.

    Returns:
        pd.DataFrame: A DataFrame containing feature importances across different variables and data modalities.
                      Columns include 'target_variable', 'target_class', 'target_class_label', 'layer', 'name',
                      and 'importance'.

    This function adjusts the device setting based on the availability of GPUs and performs the computation using
    Integrated Gradients. It processes batches of data, aggregates results across batches, and formats the output
    into a readable DataFrame which is then stored in the model's attribute for later use or analysis.
    """
    device = torch.device("cuda" if self.device_type == 'gpu' and torch.cuda.is_available() else 'cpu')
    self.to(device)

    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
    ig = IntegratedGradients(self.forward_target)

    if dataset.variable_types[target_var] == 'numerical':
        num_class = 1
    else:
        num_class = len(np.unique([y[target_var] for _, y, _ in dataset]))

    aggregated_attributions = [[] for _ in range(num_class)]
    for batch in dataloader:
        dat, _, _ = batch
        x_list = [dat[x].to(device) for x in dat.keys()]
        input_data = tuple([data.unsqueeze(0).requires_grad_() for data in x_list])
        baseline = tuple(torch.zeros_like(x) for x in input_data)
        if num_class == 1:
            # returns a tuple of tensors (one per data modality)
            attributions = ig.attribute(input_data, baseline, 
                                         additional_forward_args=(target_var, steps), 
                                         n_steps=steps)
            aggregated_attributions[0].append(attributions)
        else:
            for target_class in range(num_class):
                # returns a tuple of tensors (one per data modality)
                attributions = ig.attribute(input_data, baseline, 
                                             additional_forward_args=(target_var, steps), 
                                             target=target_class, n_steps=steps)
                aggregated_attributions[target_class].append(attributions)

    # For each target class and for each data modality/layer, concatenate attributions accross batches 
    layers = list(dataset.dat.keys())
    num_layers = len(layers)
    processed_attributions = [] 
    # Process each class
    for class_idx in range(len(aggregated_attributions)):
        class_attr = aggregated_attributions[class_idx]
        layer_attributions = []
        # Process each layer within the class
        for layer_idx in range(num_layers):
            # Extract all batch tensors for this layer across all batches for the current class
            layer_tensors = [batch_attr[layer_idx] for batch_attr in class_attr]
            # Concatenate tensors along the batch dimension
            attr_concat = torch.cat(layer_tensors, dim=1)
            layer_attributions.append(attr_concat)
        processed_attributions.append(layer_attributions)

    # compute absolute importance and move to cpu 
    abs_attr = [[torch.abs(a).cpu() for a in attr_class] for attr_class in processed_attributions]
    # average over samples 
    imp = [[a.mean(dim=1) for a in attr_class] for attr_class in abs_attr]
    # move the model also back to cpu (if not already on cpu)
    self.to('cpu')

    # combine into a single data frame
    df_list = []
    for i in range(num_class):
        for j in range(len(layers)):
            features = dataset.features[layers[j]]
            # Ensure tensors are already on CPU before converting to numpy
            importances = imp[i][j][0].detach().numpy()
            target_class_label = dataset.label_mappings[target_var].get(i) if target_var in dataset.label_mappings else ''
            df_list.append(pd.DataFrame({'target_variable': target_var, 
                                         'target_class': i, 
                                         'target_class_label': target_class_label,
                                         'layer': layers[j], 
                                         'name': features, 
                                         'importance': importances}))    
    df_imp = pd.concat(df_list, ignore_index=True)
    # save the computed scores in the model
    self.feature_importances[target_var] = df_imp

compute_loss(var, y, y_hat)

Computes the loss for a specific variable based on whether the variable is numerical or categorical. Handles missing labels by excluding them from the loss calculation.

Parameters:
  • var (str) –

    The name of the variable for which the loss is being calculated.

  • y (Tensor) –

    The true labels or values for the variable.

  • y_hat (Tensor) –

    The predicted labels or values output by the model.

Returns:
  • torch.Tensor: The calculated loss tensor for the variable. If there are no valid labels or values to compute the loss (all are missing), returns a zero loss tensor with gradient enabled.

The method first checks the type of the variable (var) from variable_types. If the variable is numerical, it computes the mean squared error loss. For categorical variables, it calculates the cross-entropy loss. The method ensures to ignore any instances where the labels are missing (NaN for numerical or -1 for categorical as assumed missing value encoding) when calculating the loss.

Source code in flexynesis/models/direct_pred.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def compute_loss(self, var, y, y_hat):
    """
    Computes the loss for a specific variable based on whether the variable is numerical or categorical.
    Handles missing labels by excluding them from the loss calculation.

    Args:
        var (str): The name of the variable for which the loss is being calculated.
        y (torch.Tensor): The true labels or values for the variable.
        y_hat (torch.Tensor): The predicted labels or values output by the model.

    Returns:
        torch.Tensor: The calculated loss tensor for the variable. If there are no valid labels or values
                      to compute the loss (all are missing), returns a zero loss tensor with gradient enabled.

    The method first checks the type of the variable (`var`) from `variable_types`. If the variable is
    numerical, it computes the mean squared error loss. For categorical variables, it calculates the
    cross-entropy loss. The method ensures to ignore any instances where the labels are missing (NaN for
    numerical or -1 for categorical as assumed missing value encoding) when calculating the loss.
    """
    if self.variable_types[var] == 'numerical':
        # Ignore instances with missing labels for numerical variables
        valid_indices = ~torch.isnan(y)
        if valid_indices.sum() > 0:  # only calculate loss if there are valid targets
            y_hat = y_hat[valid_indices]
            y = y[valid_indices]
            loss = F.mse_loss(torch.flatten(y_hat), y.float())
        else:
            loss = torch.tensor(0.0, device=y_hat.device, requires_grad=True) # if no valid labels, set loss to 0
    else:
        # Ignore instances with missing labels for categorical variables
        # Assuming that missing values were encoded as -1
        valid_indices = (y != -1) & (~torch.isnan(y))
        if valid_indices.sum() > 0:  # only calculate loss if there are valid targets
            y_hat = y_hat[valid_indices]
            y = y[valid_indices]
            loss = F.cross_entropy(y_hat, y.long())
        else: 
            loss = torch.tensor(0.0, device=y_hat.device, requires_grad=True)
    return loss

compute_total_loss(losses)

Computes the total loss from a dictionary of individual losses. This method can compute either weighted or unweighted total loss based on the model configuration. If loss weighting is enabled and there are multiple loss components, it uses uncertainty-based weighting. See Kendall A. et al, https://arxiv.org/abs/1705.07115.

Parameters:
  • losses (dict of torch.Tensor) –

    A dictionary where each key is a variable name and each value is the loss tensor associated with that variable.

Returns:
  • torch.Tensor: The total loss computed across all inputs, either weighted or unweighted.

The method checks if loss weighting is used (use_loss_weighting) and if there are multiple losses to weight. If so, it computes the weighted sum of losses, where the weight involves the exponential of the negative log variance (acting as precision) associated with each loss, added to the log variance itself. This approach helps in balancing the contribution of each loss component based on its uncertainty. If loss weighting is not used, or there is only one loss component, it sums up the losses directly.

Source code in flexynesis/models/direct_pred.py
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def compute_total_loss(self, losses):
    """
    Computes the total loss from a dictionary of individual losses. This method can compute
    either weighted or unweighted total loss based on the model configuration. If loss weighting
    is enabled and there are multiple loss components, it uses uncertainty-based weighting.
    See Kendall A. et al, https://arxiv.org/abs/1705.07115.

    Args:
        losses (dict of torch.Tensor): A dictionary where each key is a variable name and
                                       each value is the loss tensor associated with that variable.

    Returns:
        torch.Tensor: The total loss computed across all inputs, either weighted or unweighted.

    The method checks if loss weighting is used (`use_loss_weighting`) and if there are multiple
    losses to weight. If so, it computes the weighted sum of losses, where the weight involves
    the exponential of the negative log variance (acting as precision) associated with each loss,
    added to the log variance itself. This approach helps in balancing the contribution of each
    loss component based on its uncertainty. If loss weighting is not used, or there is only one
    loss component, it sums up the losses directly.
    """
    if self.use_loss_weighting and len(losses) > 1:
        # Compute weighted loss for each loss 
        # Weighted loss = precision * loss + log-variance
        total_loss = sum(torch.exp(-self.log_vars[name]) * loss + self.log_vars[name] for name, loss in losses.items())
    else:
        # Compute unweighted total loss
        total_loss = sum(losses.values())
    return total_loss

configure_optimizers()

Configure the optimizer for the DirectPred model.

Returns:
  • torch.optim.Optimizer: The configured optimizer.

Source code in flexynesis/models/direct_pred.py
 99
100
101
102
103
104
105
106
107
108
def configure_optimizers(self):
    """
    Configure the optimizer for the DirectPred model.

    Returns:
        torch.optim.Optimizer: The configured optimizer.
    """

    optimizer = torch.optim.Adam(self.parameters(), lr=self.config['lr'])
    return optimizer

forward(x_list)

Forward pass of the DirectPred model.

Parameters:
  • x_list (list of torch.Tensor) –

    A list of input matrices (omics layers), one for each layer.

Returns:
  • dict

    A dictionary where each key-value pair corresponds to the target variable name and its predicted output respectively.

Source code in flexynesis/models/direct_pred.py
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def forward(self, x_list):
    """
    Forward pass of the DirectPred model.

    Args:
        x_list (list of torch.Tensor): A list of input matrices (omics layers), one for each layer.

    Returns:
        dict: A dictionary where each key-value pair corresponds to the target variable name and its predicted output respectively.
    """
    embeddings_list = []
    # Process each input matrix with its corresponding Encoder
    for i, x in enumerate(x_list):
        embeddings_list.append(self.encoders[i](x))
    embeddings_concat = torch.cat(embeddings_list, dim=1)

    outputs = {}
    for var, mlp in self.MLPs.items():
        outputs[var] = mlp(embeddings_concat)
    return outputs  

predict(dataset)

Evaluate the model on a dataset using batching.

Parameters:
  • dataset (MultiOmicDataset) –

    dataset containing input matrices for each omics layer.

Returns:
  • dict

    Predicted values mapped by target variable names.

Source code in flexynesis/models/direct_pred.py
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
def predict(self, dataset):
    """
    Evaluate the model on a dataset using batching.

    Args:
        dataset (MultiOmicDataset): dataset containing input matrices for each omics layer.

    Returns:
        dict: Predicted values mapped by target variable names.
    """
    self.eval()  # Set the model to evaluation mode
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    self.to(device)  # Move the model to the appropriate device

    # Create a DataLoader with a practical batch size
    dataloader = DataLoader(dataset, batch_size=64, shuffle=False)  # Adjust the batch size as needed

    predictions = {var: [] for var in self.variables}  # Initialize prediction storage

    # Process each batch
    for batch in dataloader:
        dat, y_dict, samples = batch
        x_list = [dat[x].to(device) for x in dat.keys()]  # Prepare the data batch for processing

        # Perform the forward pass
        outputs = self.forward(x_list)

        # Collect predictions for each variable
        for var in self.variables:
            y_pred = outputs[var].detach().cpu().numpy()  # Move outputs back to CPU and convert to numpy
            if dataset.variable_types[var] == 'categorical':
                predictions[var].extend(np.argmax(y_pred, axis=1))
            else:
                predictions[var].extend(y_pred)

    # Convert lists to arrays if necessary, depending on the downstream use-case
    predictions = {var: np.array(predictions[var]) for var in predictions}

    return predictions

training_step(train_batch, batch_idx, log=True)

Executes one training step using a single batch from the training dataset.

Parameters:
  • train_batch (tuple) –

    The batch to train on, which includes input data and targets.

  • batch_idx (int) –

    Index of the current batch in the sequence.

  • log (bool, default: True ) –

    Whether to log the loss metrics to TensorBoard. Defaults to True.

Returns:
  • torch.Tensor: The total loss computed for the batch.

Source code in flexynesis/models/direct_pred.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def training_step(self, train_batch, batch_idx, log = True):
    """
    Executes one training step using a single batch from the training dataset.

    Args:
        train_batch (tuple): The batch to train on, which includes input data and targets.
        batch_idx (int): Index of the current batch in the sequence.
        log (bool, optional): Whether to log the loss metrics to TensorBoard. Defaults to True.

    Returns:
        torch.Tensor: The total loss computed for the batch.
    """

    dat, y_dict, samples = train_batch       
    layers = dat.keys()
    x_list = [dat[x] for x in layers]
    outputs = self.forward(x_list)
    losses = {}
    for var in self.variables:
        if var == self.surv_event_var:
            durations = y_dict[self.surv_time_var]
            events = y_dict[self.surv_event_var] 
            risk_scores = outputs[var] #output of MLP
            loss = cox_ph_loss(risk_scores, durations, events)
        else:
            y_hat = outputs[var]
            y = y_dict[var]
            loss = self.compute_loss(var, y, y_hat)
        losses[var] = loss

    total_loss = self.compute_total_loss(losses)
    # add train loss for logging
    losses['train_loss'] = total_loss
    if log:
        self.log_dict(losses, on_step=False, on_epoch=True, prog_bar=True)
    return total_loss

transform(dataset)

Transforms the input data into a lower-dimensional representation using trained encoders.

Parameters:
  • dataset

    The dataset containing the input data.

Returns:
  • pd.DataFrame: DataFrame containing the transformed data.

Source code in flexynesis/models/direct_pred.py
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
def transform(self, dataset):
    """
    Transforms the input data into a lower-dimensional representation using trained encoders.

    Args:
        dataset: The dataset containing the input data.

    Returns:
        pd.DataFrame: DataFrame containing the transformed data.
    """
    self.eval()  # Set the model to evaluation mode
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    self.to(device)  # Move the model to the appropriate device

    dataloader = DataLoader(dataset, batch_size=64, shuffle=False)  # Adjust the batch size as needed

    embeddings_list = []  # Initialize a list to collect all batch embeddings
    sample_names = []  # List to collect sample names

    # Process each batch
    for batch in dataloader:
        dat, _, samples = batch
        batch_embeddings = []
        # Process each input matrix with its corresponding Encoder
        for i, x in enumerate(dat.values()):
            x = x.to(device)  # Move data to GPU
            encoded_x = self.encoders[i](x)  # Transform data using the corresponding encoder
            batch_embeddings.append(encoded_x)

        # Concatenate all embeddings from the current batch
        embeddings_batch_concat = torch.cat(batch_embeddings, dim=1)
        embeddings_list.append(embeddings_batch_concat.detach().cpu())  # Move tensor back to CPU and detach
        sample_names.extend(samples)  # Collect sample names

    # Concatenate all batch embeddings into one tensor
    embeddings_concat = torch.cat(embeddings_list, dim=0)

    # Converting tensor to numpy array and then to DataFrame
    embeddings_df = pd.DataFrame(embeddings_concat.numpy(), 
                                 index=sample_names,  # Set DataFrame index to sample names
                                 columns=[f"E{dim}" for dim in range(embeddings_concat.shape[1])])
    return embeddings_df

validation_step(val_batch, batch_idx, log=True)

Executes one validation step using a single batch from the validation dataset.

Parameters:
  • val_batch (tuple) –

    The batch to validate on, which includes input data and targets.

  • batch_idx (int) –

    Index of the current batch in the sequence.

  • log (bool, default: True ) –

    Whether to log the loss metrics to TensorBoard. Defaults to True.

Returns:
  • torch.Tensor: The total loss computed for the batch.

Source code in flexynesis/models/direct_pred.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
def validation_step(self, val_batch, batch_idx, log = True):
    """
    Executes one validation step using a single batch from the validation dataset.

    Args:
        val_batch (tuple): The batch to validate on, which includes input data and targets.
        batch_idx (int): Index of the current batch in the sequence.
        log (bool, optional): Whether to log the loss metrics to TensorBoard. Defaults to True.

    Returns:
        torch.Tensor: The total loss computed for the batch.
    """
    dat, y_dict, samples = val_batch       
    layers = dat.keys()
    x_list = [dat[x] for x in layers]
    outputs = self.forward(x_list)
    losses = {}
    for var in self.variables:
        if var == self.surv_event_var:
            durations = y_dict[self.surv_time_var]
            events = y_dict[self.surv_event_var] 
            risk_scores = outputs[var] #output of MLP
            loss = cox_ph_loss(risk_scores, durations, events)
        else:
            y_hat = outputs[var]
            y = y_dict[var]
            loss = self.compute_loss(var, y, y_hat)
        losses[var] = loss
    total_loss = sum(losses.values())
    losses['val_loss'] = total_loss
    if log:
        self.log_dict(losses, on_step=False, on_epoch=True, prog_bar=True)
    return total_loss