Training
FineTuner
Bases: LightningModule
FineTuner class is designed for fine-tuning trained flexynesis models with flexible control over parameters such as learning rates and component freezing, utilizing cross-validation to optimize generalization.
This class allows the application of different configuration strategies to either freeze or unfreeze specific model components, while also exploring different learning rates to find the optimal setting. It carries out cross-validation to find the best combination of parameter freezing strategies and learning rates.
Attributes: |
|
---|
Methods:
Name | Description |
---|---|
apply_freeze_config |
Apply a freezing configuration to the model components. |
train_dataloader |
Returns a DataLoader for the training data of the current fold. |
val_dataloader |
Returns a DataLoader for the validation data of the current fold. |
training_step |
Executes a training step using the model's internal training logic. |
validation_step |
Executes a validation step using the model's internal validation logic. |
configure_optimizers |
Sets up the optimizer with the current learning rate and filtered trainable parameters. |
run_experiments |
Executes the finetuning process across all configurations and learning rates, evaluates using cross-validation, and selects the best configuration based on validation loss. |
Source code in flexynesis/main.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
|
HyperparameterTuning
A class dedicated to performing hyperparameter tuning using Bayesian optimization for various types of models. It supports both cross-validation and single validation set approaches, incorporates early stopping, and allows for live loss plotting during the training process for interactive usage. Configuration for the hyperparameter space can be loaded from external configuration files in yam format. The class is designed to handle both GPU and CPU environments.
Attributes: |
|
---|
Methods:
Name | Description |
---|---|
get_batch_space |
Determines the batch size search space based on the dataset size. |
setup_trainer |
Sets up the trainer with appropriate callbacks and configurations for either full training or validation based training. |
objective |
Evaluates a set of parameters to determine the performance of the model using the specified parameters. |
perform_tuning |
Executes the hyperparameter tuning process, optionally with patience for early stopping based on no improvement in performance. |
init_early_stopping |
Initializes the early stopping mechanism to stop training when validation loss does not improve for a specified number of epochs. |
load_and_convert_config |
Loads a configuration file and converts it into a format suitable for specifying search spaces in Bayesian optimization. |
Source code in flexynesis/main.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
|
__init__(dataset, model_class, config_name, target_variables, batch_variables=None, surv_event_var=None, surv_time_var=None, n_iter=10, config_path=None, plot_losses=False, val_size=0.2, use_cv=False, cv_splits=5, use_loss_weighting=True, early_stop_patience=-1, device_type=None, gnn_conv_type=None, input_layers=None, output_layers=None, num_workers=2)
Source code in flexynesis/main.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
init_early_stopping()
Initialize the early stopping callback.
Source code in flexynesis/main.py
300 301 302 303 304 305 306 307 |
|
LiveLossPlot
Bases: Callback
A callback for visualizing training loss in real-time during hyperparameter optimization.
This class is a PyTorch Lightning callback that plots training loss and other metrics live as the model trains. It is especially useful for tracking the progress of hyperparameter optimization (HPO) steps.
Attributes: |
|
---|
Methods:
Name | Description |
---|---|
on_train_start |
Initializes the loss tracking at the start of training. |
on_train_end |
Actions to perform at the end of training. |
on_train_epoch_end |
Updates and plots the loss after each training epoch. |
plot_losses |
Renders the loss plot with the current training metrics. |
Source code in flexynesis/main.py
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
|